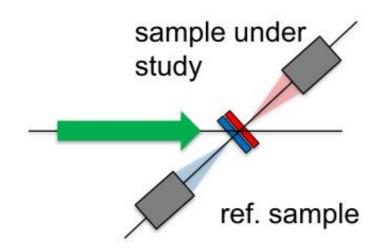
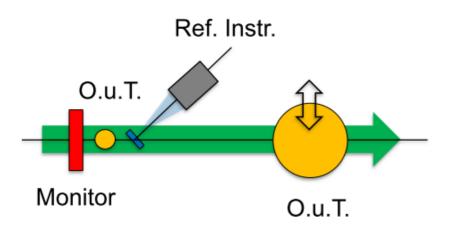

Instruments for High-Energy Neutron Metrology

R. Nolte


Overview


- Introduction: Properties of high-energy reference neutron beams
- Primary and secondary standard instruments
 - Reference cross sections
 - Recoil proton detectors
 - Fission detectors
- Alternative: Foil activation
- Ancillary equipment
 - Intensity monitors
 - Collimator design
 - Beam profile monitors
 - Scanning devices
- Summary

NB: Most of the examples are from work with PTB participation, simply because this is what I know best.

There is plenty of other excellent work outside!

Specific Challenges for Reference Beams

Cross section measurement

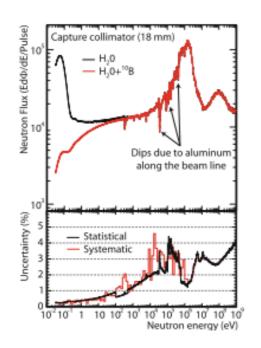
- matched samples ('back-to-back')
- identical geometries and detectors for both samples
- constant beam intensities
- many effects cancel out
- ⇒ 'as relative as possible!'

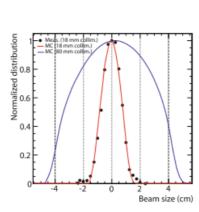
Reference Beam

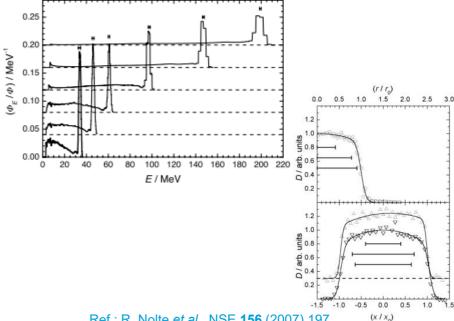
- reference instrument and objects under test (O.u.T.) are different: nucl. physics detector vs. dosemeter
- beam intensity must be varied
- several 'good' monitors required
- scanning procedure may be needed

Properties of High-Energy Neutron Sources

Energy distribution: quasi-monoenergtic: Li+p, Be+p, Be+d, ...

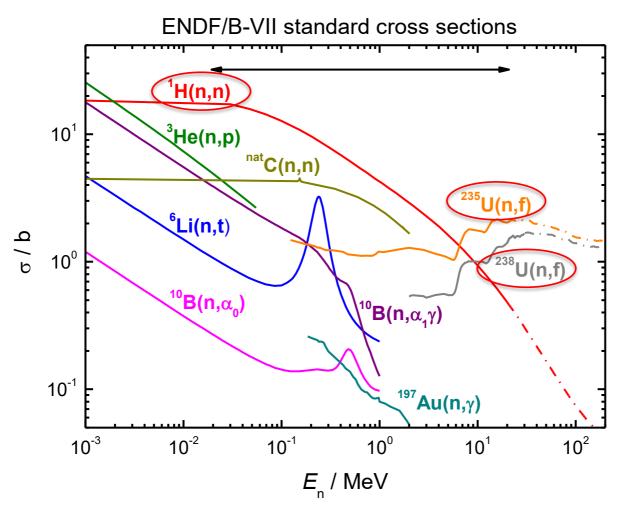

> 'white': W+p, Pb+p, ...


Time distribution: DC - ns-pulsed continuous:

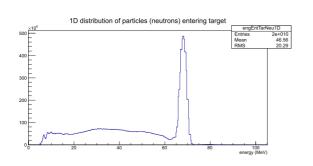

> 1 Hz - 10 MHz rep. rate:

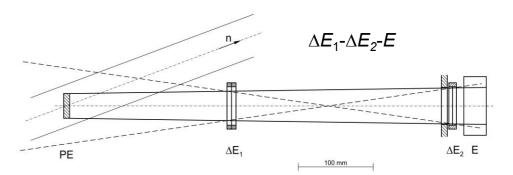
Spatial distribution: collimated beam: 1 cm - 10 cm

> (divergent fields: 4π)



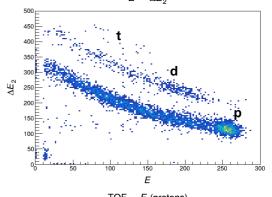
Ref.: C. Guerrero et al., EPJA 49 (2013) 27


Cross Section Standards

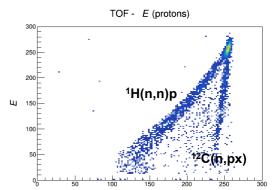

Characterization rel. to primary or secondary standard cross sections:

¹H(n,n)p, ^{235,238}U(n,f)

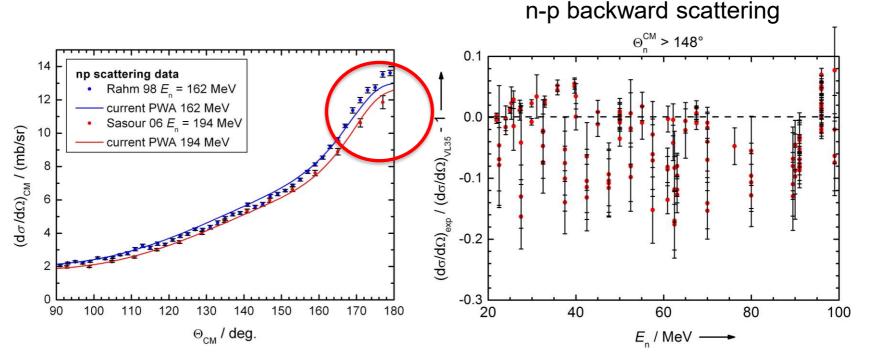
Recoil Proton Detectors: Telescopes


$$E_{\rm p} \approx E_{\rm n} \cos^2(\Theta_{\rm p}), \ d\sigma_{\rm np}/d\Omega_{\rm p} \approx \sigma_{\rm np}/4\pi \cos(\Theta_{\rm p})$$

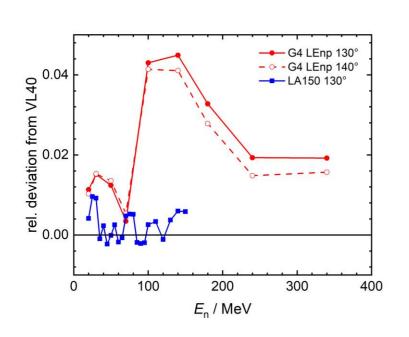
 \Rightarrow Choose angle $\Theta_{\rm p}$ close to 0°!

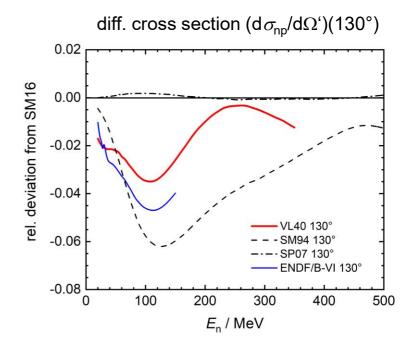

- Triple coincidence reduces background
- Particle identification: ∆E-E technique
- ¹²C(n,px): matched graphite sample
- Energy distribution: Time-of-Flight (TOF) method

Dominant uncertainty contributions:


- Statistics: $\varepsilon_n \approx 10^{-3} 10^{-4}!$
- Hydrogen content of PE samples: CH_x
- Diff. np scattering cross section: $(d\sigma_{np}/\Omega_p)$

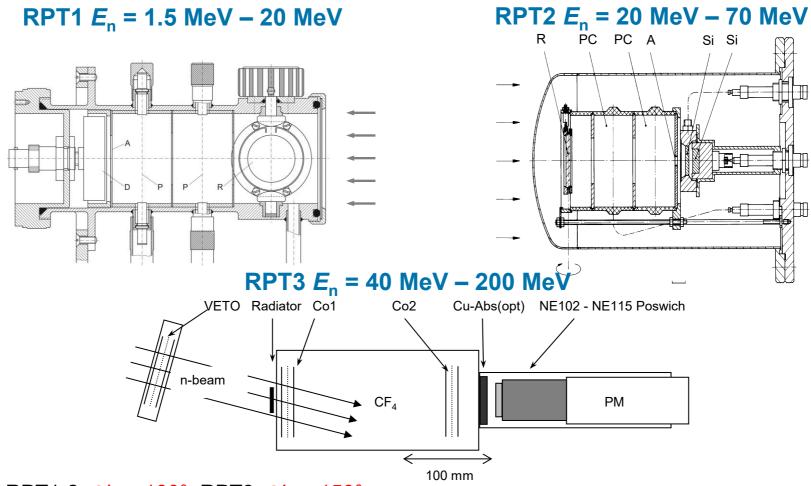
Reference Cross Section: ¹H(n,n)p





- Recommended partial wave analysis: VL40 (1996, E_n < 400 MeV)
- Data base contains many POL data from the 1980s -1990s, but only few new DX data above 30 MeV: FZK (90), UCL(97), TSL(91-05), IUCF (04-05)
- No uncertainties for DX from PWA: 'about 2%' 'about 5%'

Cross Sections for Monte Carlo Simulation of RPTs



Standard simulation tools: MCNPX (PTRAC) and Geant4 n-p cross section data bases:

- IAEA recommendation: still PWA VL40 (1996)
- MCNPX: LA150 (almost VL40) and ENDF/B-VI (1997)
- Geant4: 'Results are extracted from R. Arndt's PSA of 1998'

NB: π_0 production threshold at E_n = 280 MeV $\Rightarrow \sigma_{np} < \sigma_{tot}$

RPTs used at PTB over 40 Years

- RPT1-2: $\Theta'_n = 180^\circ$, RPT3: $\Theta'_n = 150^\circ$
- Tristearine (RPT1) and PE (RPT2-3) radiators
- Particle identification: ΔE-E technique
- Coincidence requirement: 3-fold 4-fold

The PTB RPT for n_TOF EAR1

designed for 'white' beams: TOF

plastic scintillators (EJ-204) +

XP2020Q PMTs: fast signals

• triple stage: $\Delta E_1 - \Delta E_2 - E$: low background

solid angle defined by size of ΔE₂

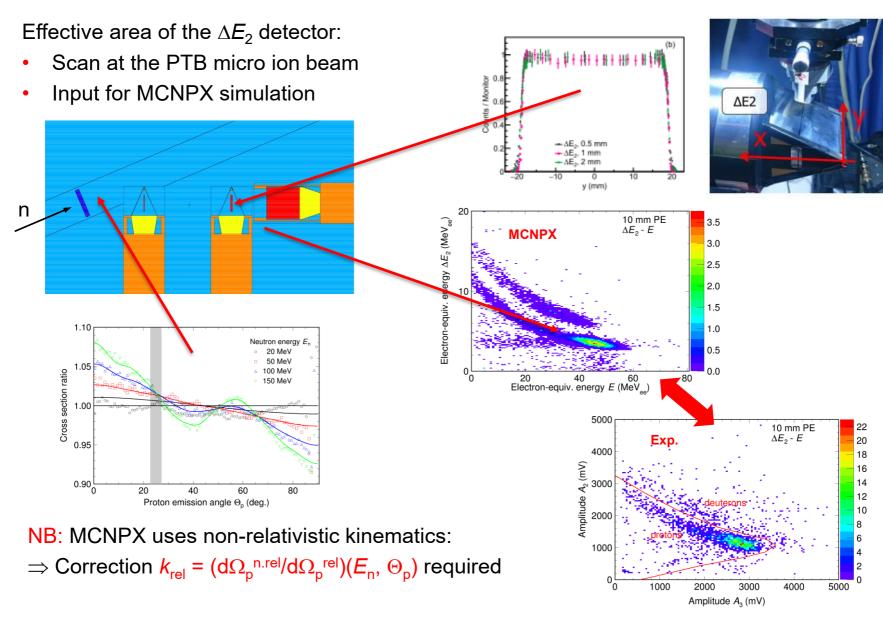
particle identification via ∆E₂-E

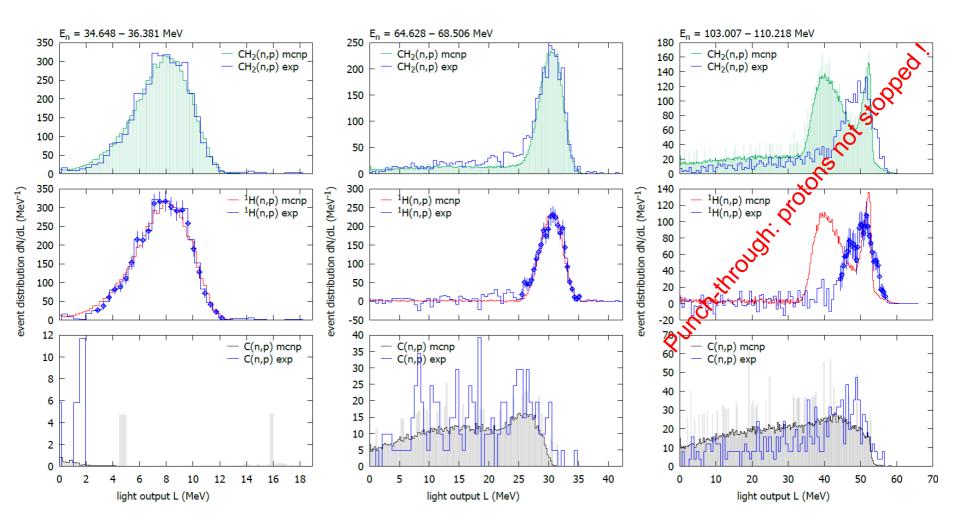
for fully-stopped particles: clear sign. for n-p evt.s

polyethylene samples +

matched graphite samples: subtract. ¹²C(n,p) evt.s

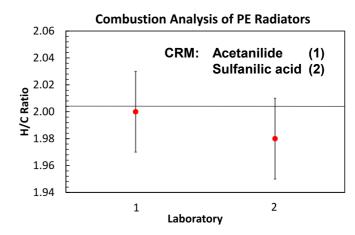
Simulation with MCNPX: n-p DX from VL40 PWA


	thickness / mm				
E _n / MeV	ΔE_1	ΔE_2	Ε	CH ₂	C
30 - 80	0.5	0.5	50	1	0.5
35 - 100	1	1	50	2	1
50 - 150	2	2	100	5	2.5



n_TOF RPT: Simulation with MCNPX

n_TOF RPT: Simulation vs. Experiment


Net PH distributions after subtraction of the data from the graphite sample

The n_TOF RPT: Uncertainty Budget

Table 5. Systematic uncertainties affecting the neutron fluence measurement with the RPT. The values correspond to the uncertainty on the detection efficiency.

Contribution	Uncertainty
Beam transmission through PPFC, PPAC	0.5 %
Isotopic composition of PE	1.5 %
Areal density of PE sample	0.2-0.6 %
Areal density of C sample	0.2-0.9 %
Cuts the ΔE - E matrix for selecting proton events	0.5 %
Fit of MCNPX simulations to the experimental light-output distributions	≤ 2.5 %
Effective area of the ΔE_2 detector	0.5 %
Distance of the detectors from the PE or C sample	0.8 %
Angle relative to the neutron beam	0.1-0.6%
Dead-time correction	0.5-1.0%

Ref.: E. Pirovano et al. JINST 18 (2023) P11011

Present technical limit:

 $u_{\rm H/C} \approx 0.8\%$

Ref.: D. VanLeeuw, JRNC 305 (2015) 967

Dominating uncertainty contributions:

Fit of the MCNPX sim.: fit region etc.

PE Stoichiometry: CH_x

np DX: ≈ 2% ← excluded from uncertainty budget!

13

Recoil Proton Detectors: The TIARA RPT

Minimum uncertainty of the n-p DX expected at backward angles:

⇒ RPT with shadow bar and annular radiator: $\overline{\theta}'_n \approx 180^\circ$

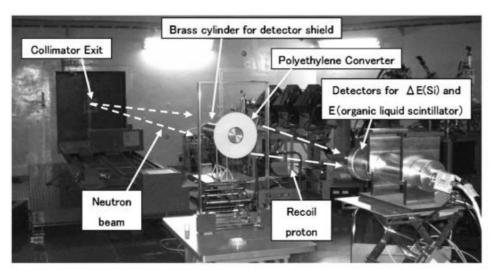


Fig. 2. Layout of the PRT componentry used to make absolute measurements in the neutron irradiation room at TIARA.

Table 2Error sources and percentages used in the evaluation of the neutron fluence through absolute measurements made with the PRT at TIARA.

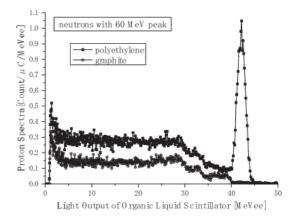
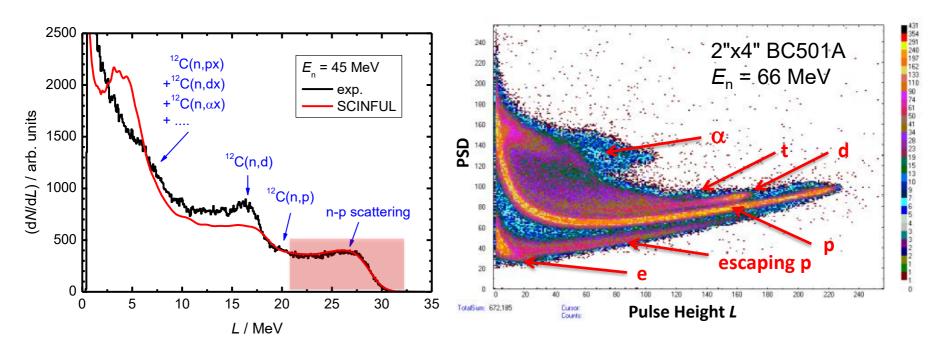
Error source	Relative error (%)
Count statistics	1.0-1.5
n-p scattering cross-section	5.0
Detection efficiency calculation statistics	1.4-2.0
Geometry	1.1-1.2
Beam monitor statistics	1.4-1.8
Normalization of beam current	2.6
Total	6.2-6.5

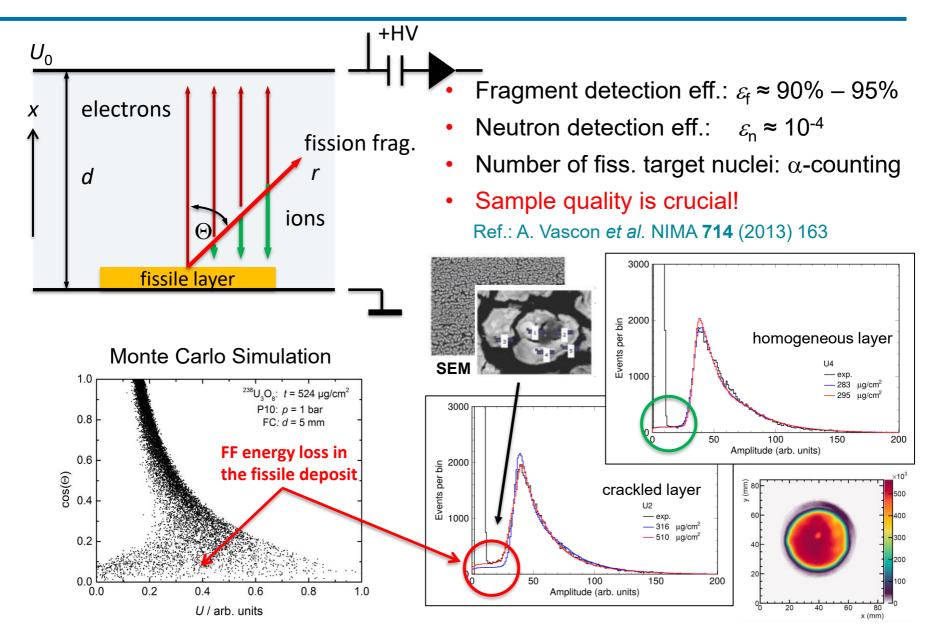
Aperture

Liquid Scintillation E detector
(BC501A, 3in. in dia. x 3in.)

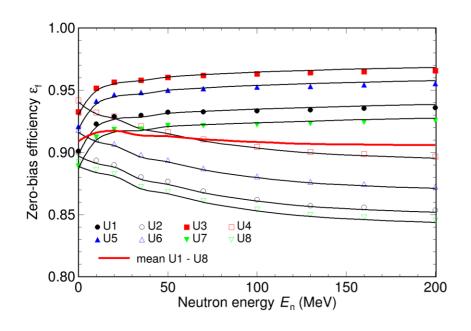
Si AE detector

Fig. 3. Schematic view of the PRT detectors.

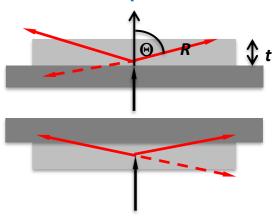




Fig. 6. Proton spectra for polyethylene and graphite converters for neutrons with 60 MeV peak.

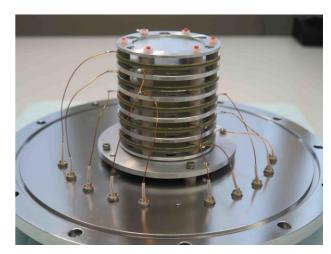
Recoil Proton Detectors: Scintillators

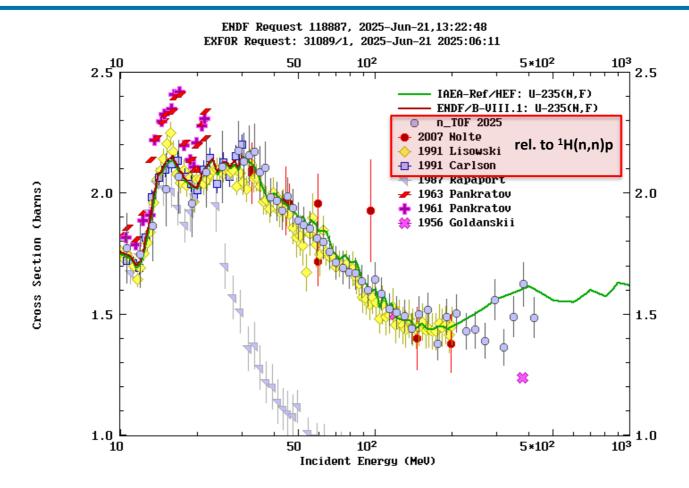


- Response dominated by n-¹²C interaction,
 Data libraries (ENDF, JEFF) have only emission tables:
- ⇒ general-purpose MC codes are not sufficient: MCNPX, Geant4
- Workarounds:
 - variable PH threshold $L_0(E_n)$, only ${}^1H(n,n)p$ events (works for $E_n < 100 \text{ MeV}$)
 - normalize efficiency for a fixed threshold L_0 : \leftarrow work at RIKEN facility Ref.: N. Nakao *et al.*, NIMA **420** (1999) 218-231


Fission Detectors: Parallel-Plate Ionization Chambers

Fission Fragment Detection Efficiency


Effect of sample orientation


²³⁵U PPFC used at n_TOF

Efficiency determined by:

- thickness and homogeneity of the deposit
- partial transfer of linear momentum
- angular distribution of fission fragments
- ⇒ Energy independence by combining forward- and backward-oriented samples

Reference Cross Section: ²³⁵U(n,f)

- Experimental data above 20 MeV available in EXFOR
- New n_TOF measurement confirms LANL+NIST data (1991 Lisowski, 1991 Carlson)
- Data base extended to 450 MeV

The Harwell FCs and n_TOF PPFC: Uncertainty Budget

Contributions to the Standard Measurement Uncertainty of the Fission Cross Sections*

Source of Uncertainty	Typical Relative Uncertainty	Туре
Number of fissionable nuclei, N_n Chamber efficiency, ε Number of fission events, N_f Peak fluence, Φ_0 Monitor reading, M Correction factor, k_1 Correction factor, k_2 Correction factor, k_3 Correction factor, k_4 Correction factor, k_5 Correction factor, k_6 Correction factor, k_7	0.002 to 0.005 0.016 0.01 to 0.05 0.025 to 0.035 0.02 0.007 0.009 0.004 0.002 0.003 0.013 0.01 to 0.07	A B B B B B B B

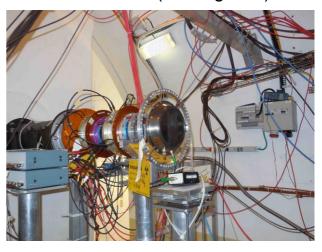
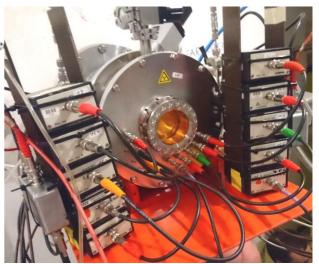
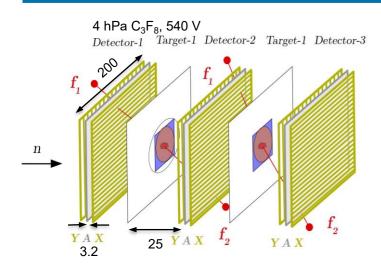
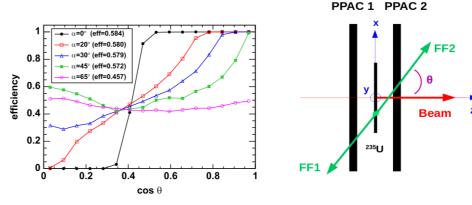

Ref.: R. Nolte et al. NSE 156 (2007) 197

Table 4. Systematic uncertainties affecting the fission-rate measurements with the PPFC. They were calculated both for each uranium target separately ('single deposit') and for the average.


Contribution	Uncertainty (average)	Single deposit
²³⁵ U mass fraction	0.0014%	0.0014 %
²³⁵ U mass per unit area	0.2 %	0.6%
²³⁵ U effective density correction k _U	0.6 %	1-2.5 %
Zero-bias efficiency	1.3 %	1.1-1.3 %
Efficiency, extrapolation below thr.	3 %	2-4.5 %
Dead-time correction k_{τ}	0.2 %	0.04-0.2 %

Ref.: E. Pirovano et al. JINST 18 (2023) P11011


Harwell FC H19 (200 mg ²³⁵U)



n_TOF FC (32.7 mg ²³⁵U)

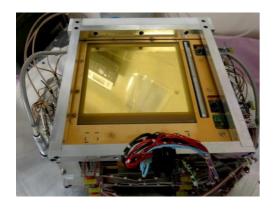
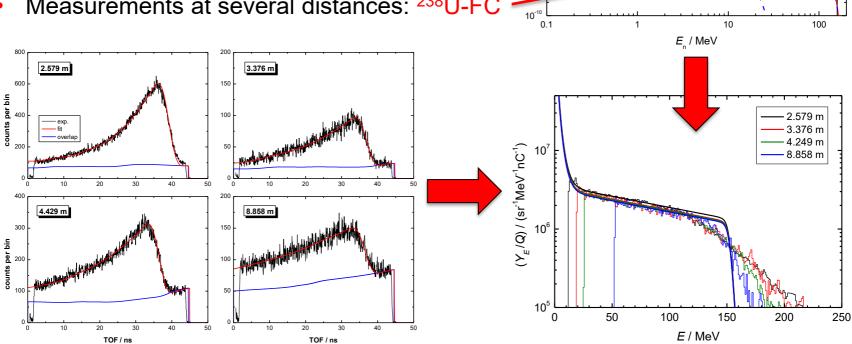

Fission Detectors: PPAC

Fig. 4. Simulated detection efficiency for different values of the α angle between the normal to the detectors and the neutron beam direction. The total detection efficiency for each case is indicated in the legend, with a statistical uncertainty of $\pm\,0.003$ in all cases.

Ref.: D. Tarrio et al., NIMA 743 (2014) 79


Parallel Plate Avalanche Counter:

- lonization chamber operated with gas amplification
- Fast timing for heavy ions and FF's
- Transparent backings (2 μm Al): detect both FF's
 - ⇒ excellent identification of fission events
- Thin segmented electrodes (1 2 μm Mylar)
 - \Rightarrow insensitive to γ -flash
- Spatial resolution by delay-line readout
- NB: efficiency depends on the projectile angle!

TOF Spectrometry with Frame Overlap

Difficult cases for TOF measurement:

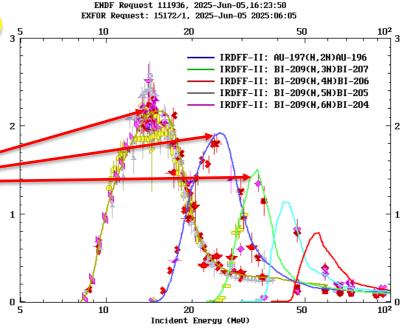
- Broad energy distributions
- Short flight paths
- High repetition frequency
- ⇒ Combination of:
- Model calculations: MCNPX
- Measurements at several distances: ²³⁸U-FC

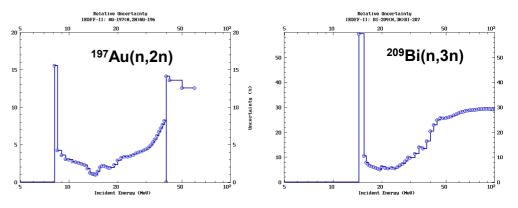
TENDL

180 MeV p + W: 0° , $\Delta\Theta = 0.57^{\circ}$

Alternatives to TOF: Spectrometry with Activation Foils

(n,xn) reactions with mono-isotopic samples: ¹⁹⁷Au(n,2n) + ²⁰⁹Bi(n,xn)




 σ(E_n) distributions for the (n,xn) channels are well localized.

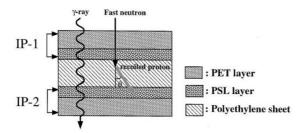
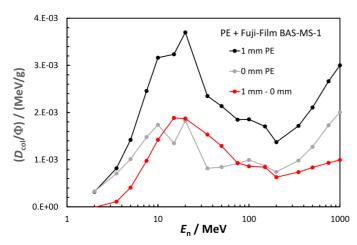
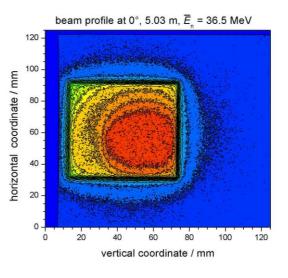
Evaluated XS uncertainty: 2 % - 5 %.
 Few exp. data for x > 4!

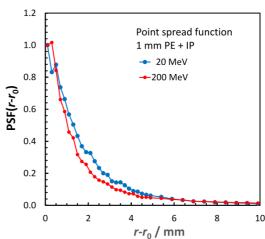
 Few-channel unfolding required: Uncertainty depends on the available pre-information!

 Interesting alternative to TOF for radiation hardness testing etc.

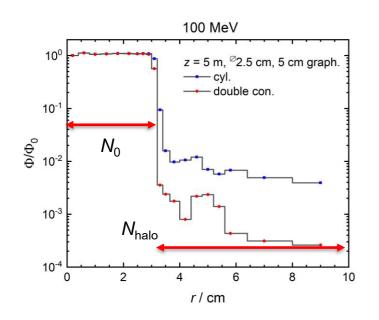
Beam Profile Monitors: Image Plates

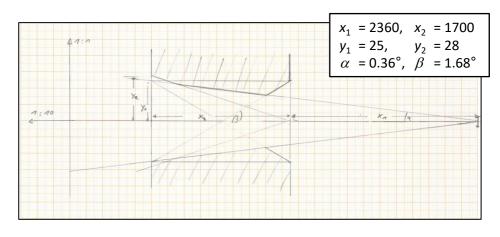
Simple solution: image plate covered by a PE layer Fujifilm IP BAS-MS-1: *Ba:F:Br:I phosphor in polyurethane matrix


Fig. 1. Arrangement of imaging plates and a polyethylene sheet for FNR.

Ref.: M. Matsubayashi et al., NIMA 463 (2001) 324

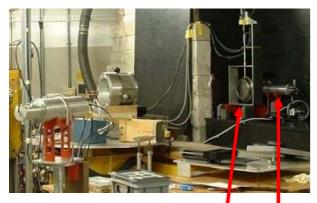

High sensitivity: ≈ 30 min per exposure¹⁾
Main disadvantage: no energy discrimination!



¹⁾ iThemba LABS: 7 Li+p @ 8 mm Li, I_{p} = 5 μ A, d = 8 m

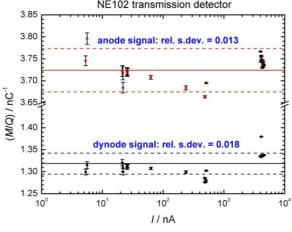
Collimator Design: Neutron Penumbra

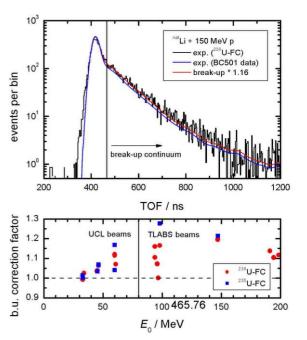
Optimized collimator shape: truncated cones


Neutron halo produced by scattering of neutrons inside the collimator opening:

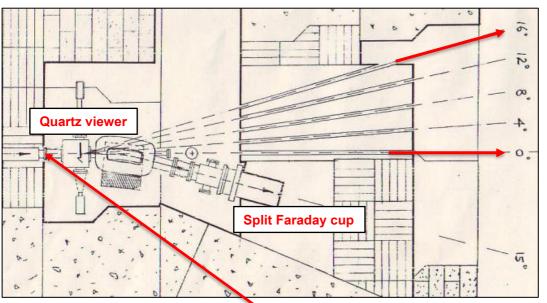
- Optimization reduced N_{halo}/N_0 by a factor of five!
- Relevant for the calibration of large devices using the scanning technique (REM Counters, Bonner Spheres)

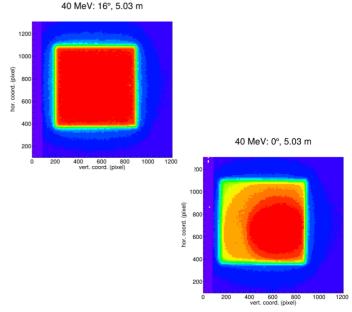
Ancillary Equipment: Intensity Monitors


Efficiency of objects under test vary: $\delta \varepsilon / \varepsilon \le 10^3$!


- Several monitors required to cover the dynamic range
- Stability of the neutron energy distribution: TOF monitor
- Active gain stabilisation of PMTs required

iThemba LABS facility


- beam current
- ²³⁸U FC (200 mg)
- NE102 transmission det.



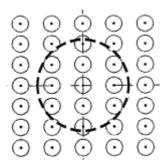
Ancillary Equipment: Proton Beam Diagnostics

iThemba LABS neutron beam facility: ⁷Li + p (40 – 200 MeV)

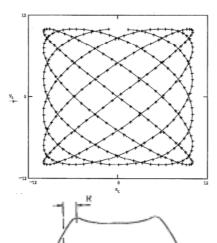
The state of the s

Important issues:

- Moving proton beam on the Li target affects the neutron beam profile
- Incomplete pulse suppression
- ⇒ Direct information for the operators


Urgent need: Retractable SEM grid for monitoring the proton beam profile!

Ancillary Equipment: Scanning Devices


Diameter of collimated neutrons beam: d < 10 cm

- Many objects under test are larger: Bonner spheres, REM counters ...
- Spot or step scanning techniques required to simulate a 'flat' field.
- Measure neutron 'current' J_E: Φ_E ≈ J_E / A_{scan}
- Minimize neutron halo!
- Time-resolved intensity monitors

Spot scan

Lissajous scan

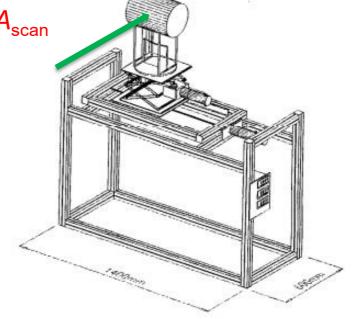


FIG. 9. Scanning system used for the calibration of the neutron rem counter.

Ref.: C. Birattari et al., Rev. Sci. Instr. 66 (1995) 4198

Summary

Characterization of high-energy neutron reference beam relative to standard cross sections:

- ¹H(n,n)p: RPTs with PE radiators and particle identification
- ²³⁵U(n,f): PPFCs or PPACs with ²³⁵U deposits
- Neutron energy distribution via TOF
- Spectrometry with activation foils for DC beams

Ancillary equipment for reference beam facilities:

- Neutron beam monitors: dynamic range > 10³,
 more than one system,
 stability of the neutron energy distributions
- Proton beam diagnostics: beam profile and position, pulse suppression
- Scanning devices for 'simulation' of large fields

Personal whish list:

- Extension of reference cross sections and MCNP libraries to 1 GeV
- Provide uncertainty for the ¹H(n,n)p DX!
- MCNP: Relativistic kinematics for light recoil particles

Acknowledgements

This is my very last talk in this business!

So, it's time to say 'thank you very much' to all former collaborators:

- Elisa Pirovano
- Mirco Dietz
- Quentin Ducasse
- Désirée Radeck
- Alice Manna
- Veronique Lacoste
- Nelson Magalotti
- Zina Ndabeni
- Tanya Hutton
- Peane Maleka
- Dieter Geduld
- Stefan Röttger
- Ricky Smit
- Andy Buffler
- Saalih Allie
- Volker Dangendorf
- Ulrich Schrewe
- Helmut Schuhmacher
- Hein J. Brede

... and many others!