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Overview
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• Introduction: Properties of high-energy reference neutron beams

• Primary and secondary standard instruments

- Reference cross sections

- Recoil proton detectors

- Fission detectors

• Alternative: Foil activation

• Ancillary equipment

- Intensity monitors

- Collimator design

- Beam profile monitors

- Scanning devices

• Summary

NB: Most of the examples are from work with PTB participation, 

simply because this is what I know best.

There is plenty of other excellent work outside!



Specific Challenges for Reference Beams
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Cross section measurement

• matched samples (‘back-to-back’)

• identical geometries and detectors

for both samples

• constant beam intensities

• many effects cancel out

 ‘as relative as possible!’

Reference Beam

• reference instrument and objects

under test (O.u.T.) are different:

nucl. physics detector vs. dosemeter

• beam intensity must be varied

• several ‘good’ monitors required

• scanning procedure may be needed



Properties of High-Energy Neutron Sources 
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Energy distribution: quasi-monoenergtic: Li+p, Be+p, Be+d, …

‘white’: W+p, Pb+p, …

Time distribution: continuous: DC - ns-pulsed

rep. rate: 1 Hz - 10 MHz  

Spatial distribution: collimated beam: 1 cm - 10 cm

(divergent fields: 4)

Ref.: C. Guerrero et al., EPJA 49 (2013) 27 Ref.: R. Nolte et al., NSE 156 (2007) 197
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Characterization rel. to primary or secondary standard cross sections: 
1H(n,n)p, 235,238U(n,f)



E1-E2-E

Recoil Proton Detectors: Telescopes
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Ep ≈ Encos2(p),  dnp/dp ≈ np/4 cos(p)

 Choose angle p close to 0°!

• Triple coincidence reduces background

• Particle identification: E-E technique

• 12C(n,px): matched graphite sample

• Energy distribution: Time-of-Flight (TOF) method

Dominant uncertainty contributions:

• Statistics: n ≈ 10-3 – 10-4!

• Hydrogen content of PE samples: CHx

• Diff. np scattering cross section: (dnp/p)

p

t

d

1H(n,n)p

12C(n,px)

0.5 mm Si – 0.5 mm Si – 3" NaI



Reference Cross Section: 1H(n,n)p
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• Partial wave analysis (SAID  code): https://gwdac.phys.gwu.edu/

• Recommended partial wave analysis: VL40 (1996, En < 400 MeV)

• Data base contains many POL data from the 1980s -1990s, but only

few new DX data above 30 MeV: FZK (90), UCL(97), TSL(91-05), IUCF (04-05)

• No uncertainties for DX from PWA: ‘about 2%’  - ‘about 5%’

n-p backward scattering



Cross Sections for Monte Carlo Simulation of RPTs
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Standard simulation tools: MCNPX (PTRAC) and Geant4

n-p cross section data bases: 

• IAEA recommendation: still PWA VL40 (1996)

• MCNPX: LA150 (almost VL40) and ENDF/B-VI (1997)

• Geant4: ‘Results are extracted from R. Arndt’s PSA of 1998’

NB: 0 production threshold at En = 280 MeV  np < tot

diff. cross section (dnp/d‘)(130°)



RPTs used at PTB over 40 Years
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RPT1 En = 1.5 MeV – 20 MeV
SiSiAPC PCR

RPT2 En = 20 MeV – 70 MeV

CF4 PM

VETO   Radiator   Co1               Co2          Cu-Abs(opt)    NE102 - NE115 Poswich 

100 mm

n-beam

• RPT1-2: ’n = 180°, RPT3: ’n = 150°

• Tristearine (RPT1) and PE (RPT2-3) radiators

• Particle identification: E-E technique

• Coincidence requirement: 3-fold – 4-fold 

RPT3 En = 40 MeV – 200 MeV



The PTB RPT for n_TOF EAR1
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• designed for ‘white’ beams: TOF

• plastic scintillators (EJ-204) +

XP2020Q PMTs: fast signals

• triple stage: E1 – E2 – E: low background

• solid angle defined by size of E2

• particle identification via E2-E

• for fully-stopped particles: clear sign. for n-p evt.s

• polyethylene samples + 

matched graphite samples: subtract. 12C(n,p) evt.s

• Simulation with MCNPX: n-p DX from VL40 PWA

Ref.: E. Pirovano et al. JINST 18 (2023) P11011



n_TOF RPT: Simulation with MCNPX

11 IAEA Workshop: Neutron Beams at High Energy, Vienna, 7-8 July 2025

Effective area of the E2 detector: 

• Scan at the PTB micro ion beam

• Input for MCNPX simulation

NB: MCNPX uses non-relativistic kinematics: 

 Correction krel = (dp
n.rel/dp

rel)(En, p) required

MCNPX

Exp.

n



n_TOF RPT: Simulation vs. Experiment
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Net PH distributions after subtraction of the data from the graphite sample 



The n_TOF RPT: Uncertainty Budget
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Ref.: E. Pirovano et al. JINST 18 (2023) P11011

Dominating uncertainty contributions:

• Fit of the MCNPX sim.: fit region etc.

• PE Stoichiometry: CHx

• np DX: ≈ 2% excluded from uncertainty budget!

CRM: Acetanilide (1)

 Sulfanilic acid (2)

Present technical limit: 

uH/C ≈ 0.8%

Ref.: D. VanLeeuw, JRNC 305 (2015) 967 



Recoil Proton Detectors: The TIARA RPT
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Ref.: Y. Shikaze et al., NIMA 615 (2010) 211-219

Minimum uncertainty of the n-p DX expected at backward angles:

 RPT with  shadow bar and annular radiator: 𝜣𝐧

′
≈ 180°



Recoil Proton Detectors: Scintillators
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• Response dominated by n-12C interaction,

Data libraries (ENDF, JEFF) have only emission tables:

 general-purpose MC codes are not sufficient: MCNPX, Geant4

• Workarounds: 

- variable PH threshold L0(En), only 1H(n,n)p events (works for En < 100 MeV)

- normalize efficiency for  a fixed threshold L0:  work at RIKEN facility

2"x4" BC501A

En = 66 MeV


t d

p

e
escaping p

P
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Pulse Height L

Ref.: N. Nakao et al., NIMA 420 (1999) 218-231



FF energy loss in 
the fissile deposit

Fission Detectors: Parallel-Plate Ionization Chambers
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fissile layer

+HV

electrons

fission frag.

d

ions


x

r
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• Fragment detection eff.: f ≈ 90% – 95% 

• Neutron detection eff.:    n ≈ 10-4

• Number of fiss. target nuclei: -counting

• Sample quality is crucial!

Ref.: A. Vascon et al. NIMA 714 (2013) 163

Monte Carlo Simulation
SEM

crackled layer

homogeneous layer



Fission Fragment Detection Efficiency

17 IAEA Workshop: Neutron Beams at High Energy, Vienna, 7-8 July 2025

Efficiency determined by:

• thickness and homogeneity of the deposit

• partial transfer of linear momentum

• angular distribution of fission fragments

 Energy independence by combining 

forward- and backward-oriented samples

235U PPFC used at n_TOF

 tR

Effect of sample orientation



Reference Cross Section: 235U(n,f)
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• Experimental data above 20 MeV available in EXFOR

• New n_TOF measurement confirms LANL+NIST data (1991 Lisowski, 1991 Carlson)

• Data base extended to 450 MeV

rel. to 1H(n,n)p



The Harwell FCs and n_TOF PPFC: Uncertainty Budget
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Ref.: E. Pirovano et al. JINST 18 (2023) P11011

Ref.: R. Nolte et al. NSE 156 (2007) 197

Harwell FC H19 (200 mg 235U)

n_TOF FC (32.7 mg 235U)



Fission Detectors: PPAC
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Ref.: D. Tarrio et al., NIMA 743 (2014) 79

Parallel Plate Avalanche Counter:

• Ionization chamber operated with gas amplification

• Fast timing for heavy ions and FF‘s

• Transparent backings (2 µm Al): detect both FF’s

 excellent identification of fission events

• Thin segmented electrodes (1 – 2 µm Mylar)

 insensitive to -flash

• Spatial resolution by delay-line readout

• NB: efficiency depends on the projectile angle!

25
3.2

4 hPa C3F8, 540 V



TOF Spectrometry with Frame Overlap
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Difficult cases for TOF measurement:

• Broad energy distributions

• Short flight paths

• High repetition frequency

 Combination of:

• Model calculations: MCNPX

• Measurements at several distances: 238U-FC
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Alternatives to TOF: Spectrometry with Activation Foils
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(n,xn) reactions with mono-isotopic samples:  197Au(n,2n) + 209Bi(n,xn)

• (En) distributions for the (n,xn) 

channels are well localized.

• Evaluated XS uncertainty: 2 % - 5 %.

Few exp. data for x > 4!

• Few-channel unfolding required:

Uncertainty depends on the 

available pre-information!

• Interesting alternative to TOF for 

radiation hardness testing etc.

197Au(n,2n) 209Bi(n,3n)



Beam Profile Monitors: Image Plates 
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Simple solution: image plate covered by a PE layer

Fujifilm IP BAS-MS-1: *Ba:F:Br:I phosphor in polyurethane matrix

High sensitivity: ≈ 30 min per exposure1)

Main disadvantage: no energy discrimination!

1) iThemba LABS: 7Li+p @ 8 mm Li, Ip = 5 µA, d = 8 m

Ref.: M. Matsubayashi et al., NIMA 463 (2001) 324



Collimator Design: Neutron Penumbra
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x1 = 2360, x2 = 1700
y1 = 25,    y2 = 28
 = 0.36°,  = 1.68°

Optimized collimator shape: truncated cones

Neutron halo produced by scattering of neutrons inside the collimator opening:

• Optimization reduced Nhalo/N0 by a factor of five! 

• Relevant for the calibration of large devices using the scanning technique

(REM Counters, Bonner Spheres)

N0

Nhalo



Ancillary Equipment: Intensity Monitors 
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Efficiency of objects under test vary:  / ≤ 103!

• Several monitors required to cover the dynamic range

• Stability of the neutron energy distribution: TOF – monitor

• Active gain stabilisation of PMTs required

iThemba LABS facility

• beam current

• 238U FC (200 mg)

• NE102 transmission det.



Ancillary Equipment: Proton Beam Diagnostics
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Urgent need: Retractable SEM grid for monitoring the proton beam profile!

iThemba LABS neutron beam facility: 
7Li + p (40 – 200 MeV)

Important issues:

• Moving proton beam on the Li target

affects the neutron beam profile

• Incomplete pulse suppression

 Direct information for the operators

Split Faraday cup

Quartz viewer



Ancillary Equipment: Scanning Devices
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Ref.: C. Birattari et al., Rev. Sci. Instr. 66 (1995) 4198

Diameter of collimated neutrons beam: d < 10 cm

• Many objects under test are larger: Bonner spheres, REM counters …

• Spot or step scanning techniques required

to simulate a ‘flat’ field.

• Measure neutron ‘current’ JE: E ≈ JE / Ascan

• Minimize neutron halo!

• Time-resolved intensity monitors

Spot scan Lissajous scan



Summary
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Characterization of high-energy neutron reference beam 

relative to standard cross sections:

• 1H(n,n)p: RPTs with PE radiators and particle identification

• 235U(n,f): PPFCs or PPACs with 235U deposits 

• Neutron energy distribution via TOF

• Spectrometry with activation foils for DC beams

Ancillary equipment for reference beam facilities:

• Neutron beam monitors: dynamic range > 103,

more than one system,

stability of the neutron energy distributions

• Proton beam diagnostics: beam profile and position,

pulse suppression

• Scanning devices for ‘simulation’ of large fields

Personal whish list:

• Extension of reference cross sections and MCNP libraries to 1 GeV

• Provide uncertainty for the 1H(n,n)p DX !

• MCNP: Relativistic kinematics for light recoil particles
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