

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847552 (SANDA).

Experiment for Double-Differential Cross Section Measurement with the Emission of Light Charged Particles from High Energy Neutrons on Carbon at n_TOF

nBHEAM Workshop 2025, IAEA Vienna

R. Beyer, A. Di Chicco, M. Dietz, A. Junghans, R. Nolte, E. Pirovano, and the n_TOF collaboration

Motivation in Neutron Dosimetry

Where are high-energy neutrons produced?

- by cosmic radiation: E_n up to GeV
- in hadron therapy: E_n up to 200 MeV / 430 MeV for proton / carbon beams

Absorbed dose calculations require

- DDX data for (n, px) (n, dx) (n, αx) ...
- for tissue constituents (C, N, O)
- Particularly important for young patients of radiation therapy

(Si: Radiation damage in aircraft and space instrumentation)

Main problems related to high-energy neutrons (DDX)

For a precise neutron absorbed dose calculations we require Double diff. cross section (DDX) data (C, N, O etc.) for (n, p d t ³He ⁴He), but:

- Few datasets, at selected neutron energies, only up to 100 MeV (for Carbon).
- Evaluations not based on experimental data but model calculations (INC models):
 - Big discrepancies with experimental data;
 - ➤ New data are necessary for benchmarking, especially in the range 100-200 MeV or higher and for the emission of compound ejecticles;

n_TOF @ CERN

• EAR1 (horizontal beam line of 185 m)

EAR2

Time-of-flight (t)

Flightpath (L)

p-beam from PS

 $E_{\rm n} = m_{\rm n}c^2(\frac{1}{\sqrt{1-\beta^2}} - 1)$

• EAR2 (vertical beam line of 20 m)

Two experimental areas

Proton bunch

PS (20 GeV/c)

Start time

nBHI

Only pulsed neutron source >100 MeV in Europe!

n TOF EAR1:

EAR1

products

Target

Detector in EARs

Stop time

- large energy range: 25 meV 1 GeV
- high energy resolution: ΔE/E=10-4
- low repetition rate $< 0.8 \text{ Hz} \rightarrow \text{low average flux}$
- high instantaneous flux

typical bunch: 7·10¹² protons × 300 neutrons/proton

to evaluate feasibility of DDX measurements above 100 MeV @ n TOF

1.00E+06

1.77E-04

INTC-2023-007, INTC-P-651, https://cds.cern.ch/record/284

DDX chamber Concept for C(n,lcp) at n_TOF

Proof-of-principle experiment with the new DDX chamber with 6 meas. angles (± 20°, 60°, 120°), in the energy range between 20-250 MeV:

- Measurement of the energy distribution of the neutroninduced emission of p, d, t, α, ³He;
- Particle identification with the ΔE -E telescope technique and the Time-of-Flight technique:
 - (For each angle) 1 thin Si diode, 1 thicker Si diode and 1 Scintillator (EJ-204)
 - Different combination of ΔE-E telescope and electronics

Beamtime in September/October 2024 (30 days measurement):

- 2 Carbon targets (2 mm and 75 μm).
- 1 Polyethylene target.

RN-INTC-2023-007, INTC-P-651, https://cds.cern.ch/record/2

DDX chamber Concept for C(n,lcp) at n_TOF

Proof-of-principle experiment with the new DDX chamber with 6 meas. angles (± 20°, 60°, 120°), in the energy range between 20-250 MeV:

- Measurement of the energy distribution of the neutroninduced emission of p, d, t, α, ³He;
- Particle identification with the ΔE -E telescope technique and the Time-of-Flight technique:
 - (For each angle) 1 thin Si diode, 1 thicker Si diode and 1 Scintillator (EJ-204)
 - Different combination of ΔE-E telescope and electronics

Beamtime in September/October 2024 (30 days measurement):

- 2 Carbon targets (2 mm and 75 μm).
- 1 Polyethylene target.

DDX experiment @ n_TOF

1st Si diode signal really noisy;

Low Light Output for the EJ204 (15 cm) and CeBr₃

11000 12000 13000 14000 15000 16000 17000 18000 19000 Time [ns]

nBHEAM 2025, Vienna, 7th July, Mirco Dietz

Reconstruction of total energy of emitted charged particles

For the DDX characterization we need the total energy of the emitted ion $E_{i.tot}(E_n, \theta)$:

- Energy self-absorbed within the target $(E_{i,dep-tar.})$;
- In the pair of Silicon diodes we measure lower energy than what is actually emitted;
- Energy loss in Kapton windows (between the second silicon and scintillator)
- Ion-dependent light-output $(L_i[MeVee])$ conversion of the EJ-204 scintillators into energy;

Preliminary results at 60° S1: 60 µm S2: 500 µm, E: EJ 10 cm

Proton contributions from 2 mm Carbon target:

- Update and improvement of the code for finding coincidences (double and triple) according to ion species;
- Incorporation of energy loss corrections in Kapton windows
- Conversion of scintillator light output (LO) into deposited energy according the ion species;
- > Excess of high-energy proton contributions in the S1-S2 pair
- ➤ Absence of such contributions in Geant4-INCL simulations

Preliminary results at 60° S1: 60 µm S2: 500 µm, E: EJ 10 cm

Preliminary analysis of proton emission spectra:

- ➤ Applying a punch-through cut improves the agreement between the experimental and simulated proton emission spectra (This effect observed in results at –120°, too);
- ➤ A proper interpretation of the experimental spectra requires identifying the origin of the excess contributions:
- This step is also essential when analyzing the polyethylene target, in order to subtract the proton contribution from carbon and to perform an accurate normalization.

Preliminary results at 60° S1: 60 µm S2: 500 µm, E: EJ 10 cm

High-energy protons may escape or deposit too little energy to scintillate (This could result in an underestimation of the proton yield, particularly at higher energies.)

Conclusion, future Works & Outlook

- ✓ The proof-of-principle experiment with new DDX chamber showed good potential for identifying emitted secondary particles, but also needs further development to optimise its performance;
- ✓ Presence of **excess** contributions in the silicon diode pair;
- \checkmark Exp. total proton spectra induced by neutrons having $E_n > 150$ MeV show lower intensity than simulations (possible energy underestimation due to insufficient scintillation by high-E protons);
- Corrections for energy loss within the carbon target (especially important for alpha particles)
- Investigation of experimental challenges (deterioration of energy resolution of some thin Si diodes, low light-output of some E-detectors)
- ❖ Verification / validation of the EJ-204 charged particles response functions → beam times at PTB planned

- Normalisation of experimental data with Polyethylene target data
- Characterization of DDX of light charged particle emission for the energy range of 20-150 MeV and comparison with verified experimental data
- > Planning of future experiments on other tissue constituents like N, O, ...

Acknowledgement:

- HZDR colleagues
- PTB Transport Service
- PTB Workshop and electricians
- Local team
- Shifters
- n TOF
- RP (PTB + CERN)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Bundesallee 100 38116 Braunschweig

Dr. Mirco Dietz

Telefon: +49531 592-6440 E-Mail: mirco.dietz@ptb.de

www.ptb.de

Appendix

