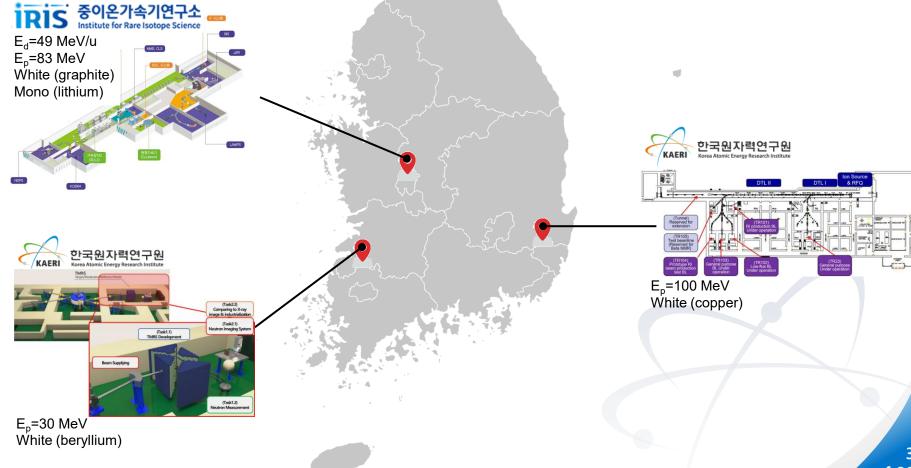
IAEA nBHEAM 2025

A new GEANT4 fission physics model for simulation of high-energy neutron detection and measurements

- 1) Korea Atomic Energy Research Institute
- 2) University of Science & Technology

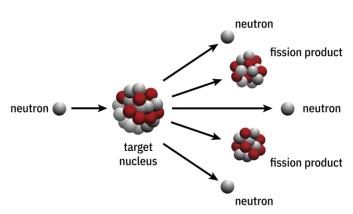
Phil LEE

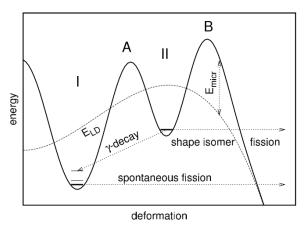


- **01** Neutron Facilities in Korea
- **02** Fission for Neutron Detection
- **03** Fission Model and Tests
- **04** Validation with Criticality
- 05 Summary

Neutron Facilities in Korea

- Accelerator-driven High-energy Neutron Sources
 - High-energy neutron sources based on accelerators are currently operational in Korea




1 Tission for Neutron Detection

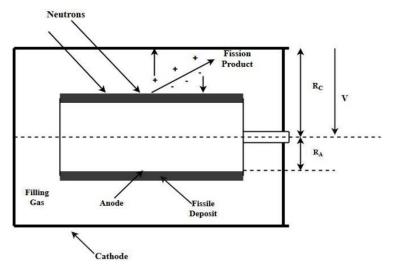
Nuclear Fission

Subatomic phenomenon in which a nucleus splits into two, emitting energetic neutrons and photons

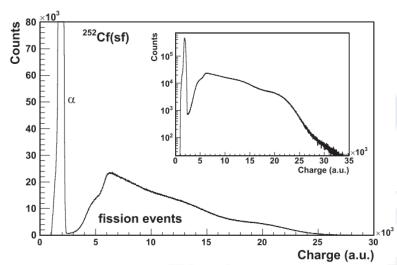
Nuclear fission (https://www.atomicarchive.com/science/fission)

Schematic plot of the double-humped fission barrier as function of the elongation

J. Randrup, and R. Vogt, "Nuclear Fission", LLNL-BOOK-591732


Various research and applications

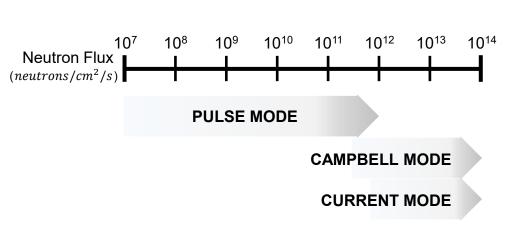
- Basic research
- Energy production
- Rare and medical radioactive isotopes production
- Nuclear waste package assay
- Nuclear safeguards and inspection

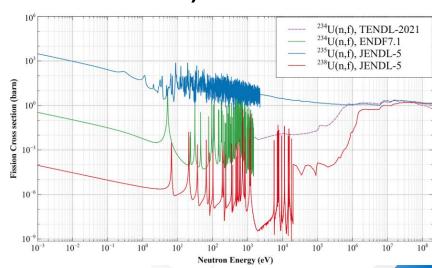


102 Fission for Neutron Detection

- Neutron Fission Counter (or Fission Chamber)
 - Neutron detection based on the neutron-induced fission of fissile materials
 - Typically, in the form of gas counters holding fissile materials
 - Relatively insensitive to gamma compared to neutron, but background signals due to the alpha decay of fissile materials

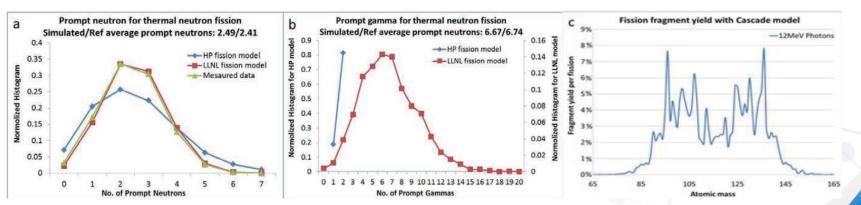
Basic operation principle of a fission chamber James et al., IEEE Trans. Nucl. Sci. 57 (2010) 3678--3682




The response of the ²³⁸U fission counter exposed to ²⁵²Cf J. Taieb et al., Nucl. Instrum. Methods A833 (2016) 1--7

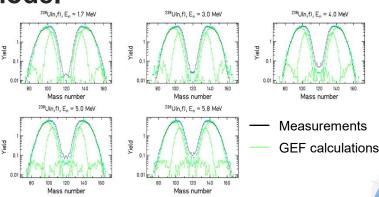
102 Fission for Neutron Detection

- Neutron Fission Counter (or Fission Chamber)
 - Covers a wide neutron-flux range depending on the operation mode: pulse, Campbell, and current mode
 - Detects neutrons in the broad neutron energy range: from a few meV up to a few hundred MeV
 - Operates under extreme conditions such as nuclear reactors (e.g., high temperature or high radiation fields)



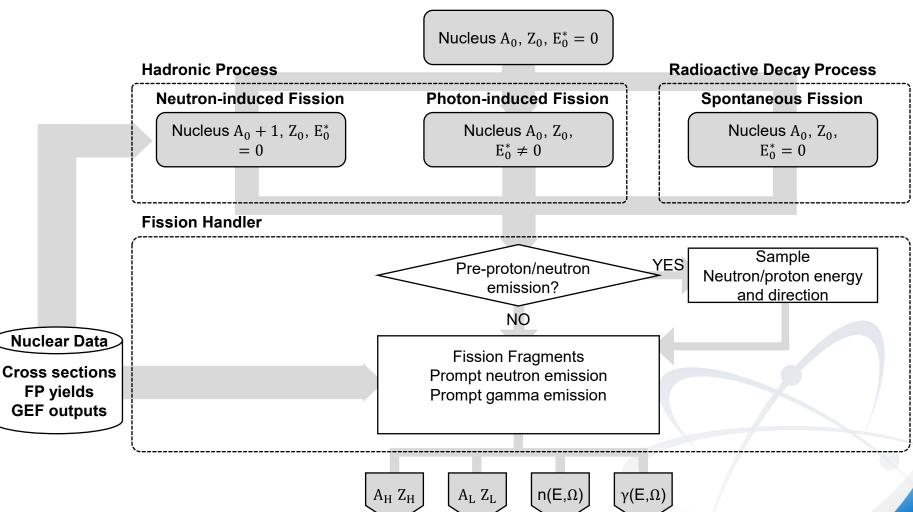
- GEANT4 High-precision Neutron Models
 - Appropriate for most neutron simulations
 - Physics model includes
 - Elastic scattering (thermal neutron scattering for specific nuclides)
 - Inelastic scattering
 - Capture
 - Fission
 - Models based on the evaluated dataset, G4NDL
 - Cross sections
 - Fission fragment yields and final states

- GEANT4 High-precision Neutron Models
 - The HP fission model generates fission observables that are inconsistent with the measurements
 - Total and kinetic energy, and the multiplicity of particles are not reproduced well with this model
 - Photo-fission is not properly being addressed in GEANT4

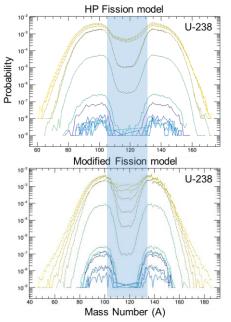

Multiplicity of prompt (a) neutron and (b) gamma for neutron-induced fission of ²³⁵₉₂U, and fission-fragment yields for photo-fission of ²³⁵₉₂U. J. Tan and J. Bendahan, Physics Procedia 90 (2017) 256--265

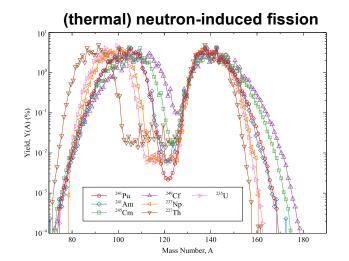
General description of the fission observables (GEF)

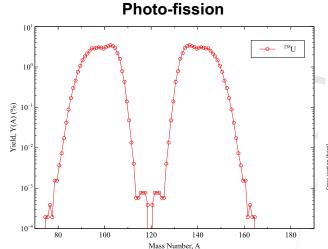
[Ref] General Description of Fission Observables, NEA/DB/DOC(2014)1, and https://www.lp2ib.in2p3.fr/nucleaire/nex/gef

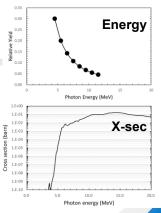

- The code treats spontaneous and neutron-induced fission at excitation energy up to 100 MeV
- Trying to implement a fission model that is able to reproduce physical observables without a complete set of nuclear data
- The following quantities of GEF calculations are used as input data to the GEANT4 fission model
 - Fission fragments yield for photo-fission
 - Multi-chance fission probabilities
 - Prompt-gamma and neutron spectrum
 - Neutron and gamma multiplicity

Measured pre-neutron mass distributions from neutron-induced fission of U-238, K.-H. Schmidt and B. Jurado

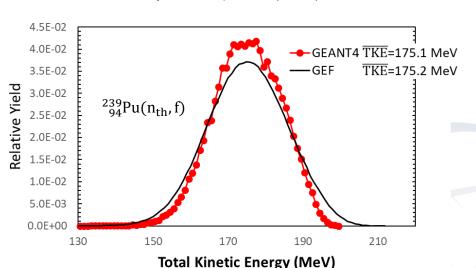

Proposed Fission Model






Fission Fragments

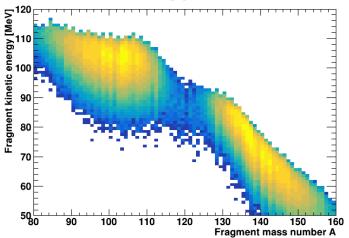
- Generated based on the ENDF card (MT=454)
 - Dependency on excitation energy gets improved
- Spontaneous and neutron-induced fission
 - GEFY-6.1 Fission Yield Libraries
- Photo-fission
 - GEF-generated fission product yields at E_x^*

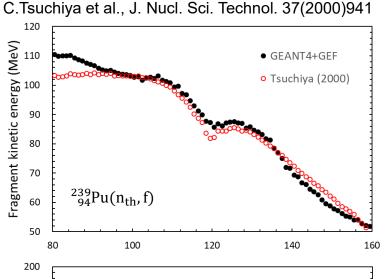


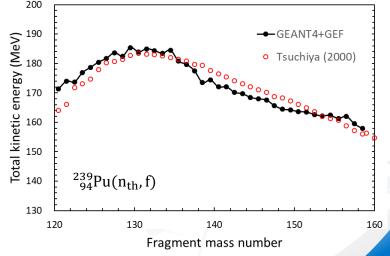
Fission Fragments

Energy conservation

$$Q = T_A + T_B + T_n + E_{\gamma} + E_{coll}$$

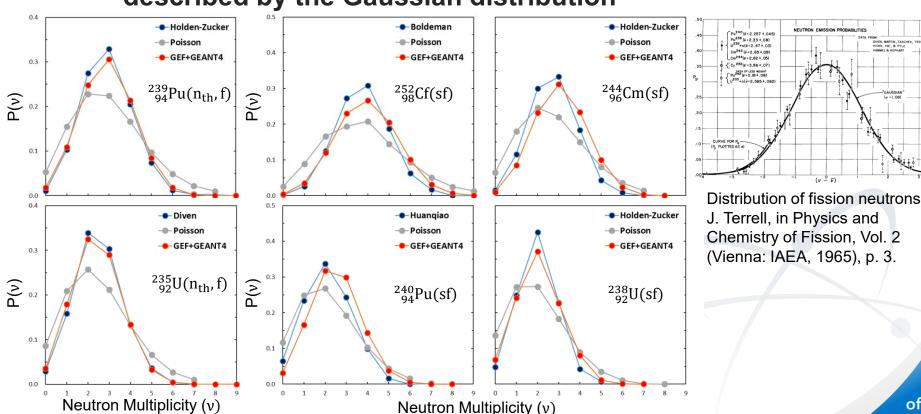

- *T*_{A,B}= fragments kinetic energy
- T_n= total neutron kinetic energy
- E_{γ} = total gamma energy
- E_{coll}= collective energy of fragments
 - [1] K.-H. Schmidt and B. Jurado, NEA/DB/DOC(2014)1
 - [2] M. Asghar and R.W. Hasse, J. Phys. Colloques 45(1984)C6-455

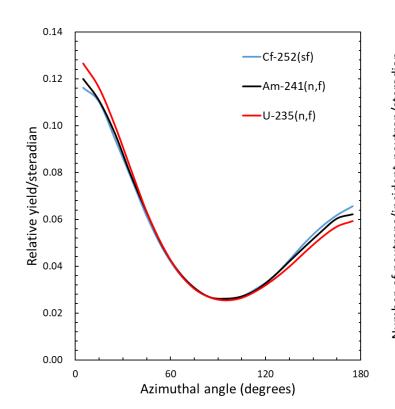


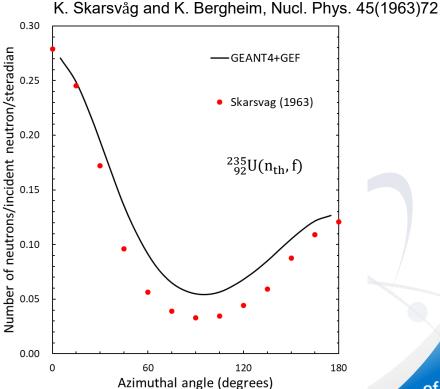

Fission Fragments (Quantum-mechanical features)

Kinetic energy

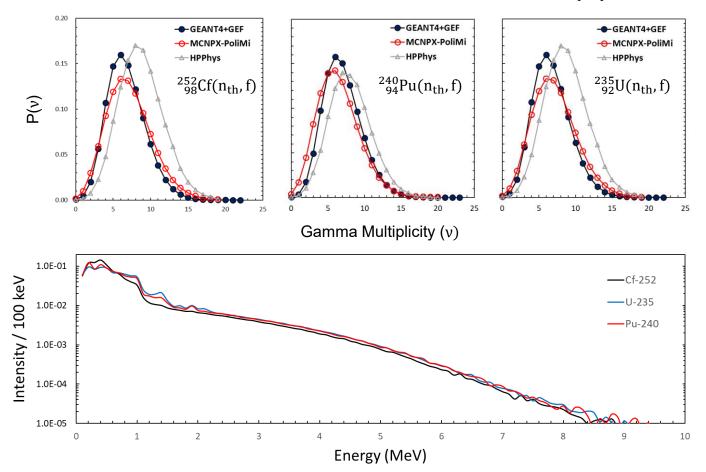
- ²³⁹Pu + n_{thermal} case
 - A≈120: Strong deformation of mid-shell nuclei
 - A≈132: Close to doubly-magic closed-shell nuclei, weak deformation

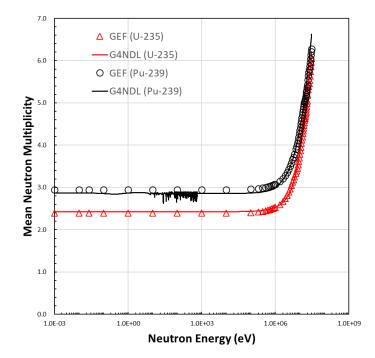


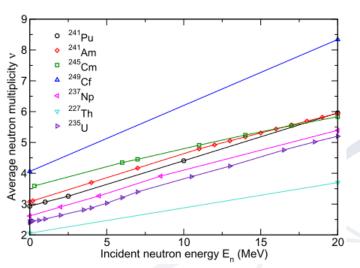

Prompt Neutron Emission


- HPFission model samples multiplicity (ν), assuming ν follows a Poisson distribution with a mean value of ν
- Gaussian distribution that governs neutron emission seems independent of fissioning nucleus, but each ν cannot be described by the Gaussian distribution

- Prompt Neutron Emission
 - Isotropic emission from moving fragments
 - Asymmetric angular distribution with respect to the fragments due to Lorentz boost
 - Angular sampling based on data is available, if needed

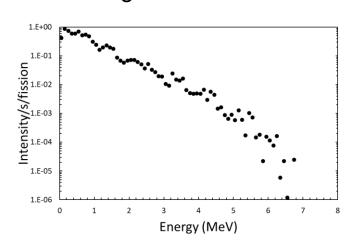


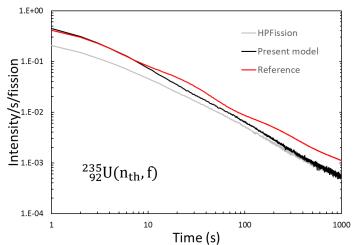

Prompt Gamma Emission


HPFission model samples multiplicity (ν), assuming ν follows a Poisson distribution with a mean value of ν (E)

- Neutron and gamma emission (n-Fission)
 - The higher incident energy causes a larger multiplicity √v because the higher incident energy results in a more excited compound nucleus
 - HPFission is based on the evaluated data for $\overline{\nu}$, assuming the multiplicity follows the Poisson distribution
 - The GEF multiplicity is tuned in criticality calculations

Neutron multiplicity as a function of incident neutron energy. J. Randrup and R. Vogt (2012)




Delayed Neutron and Gamma Emission

- Delayed neutron and gamma emissions can be handled by the radioactive decay process in GEANT4
 - However, β-delayed nucleon emission is not implemented yet in the radioactive decay process
 - It seems appropriate for the GEANT4 physics framework to handle delayed neutrons in radioactive decay rather than fission processes
- Fission fragments solely determine the delayed gamma rays

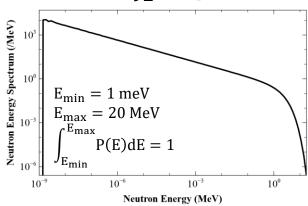
Decay time and energy correspond to half-life and level scheme of

fission fragments

[1] J. Tan and J. Bendahan, Physics Procedia 90(2017)256

[2] T. Gozani, NUREG/CR-0602 (1981)

04 Validation with Criticality

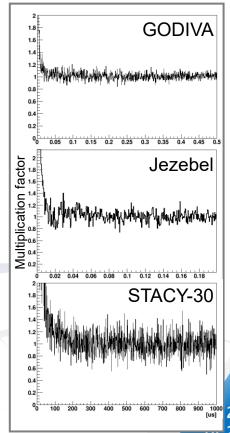

Criticality Calculations

- Simulations were validated for three critical systems: GODIVA, Jezebel, and STACY-30 [International Handbook of Evaluated Criticality Benchmark Experiments]
- **Multiplication factors** k_{eff} and α were calculated

$$k_{eff} = \frac{n_p(t)}{n_l(t)}$$

where $n(t) = n_0 e^{\alpha t}$ describes the population and loss of fission neutrons in the system

Primary neutrons: Watt fission spectrum for $^{235}_{92}$ U sp-Fission



04 Validation with Criticality

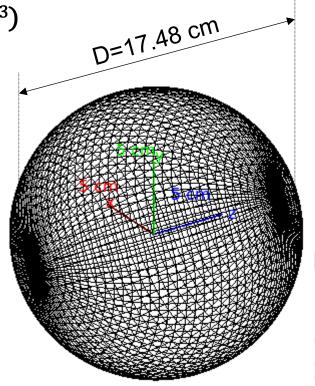
Criticality Calculation Results

- The criticality and alpha are found to be very sensitive to the neutron multiplicity (in unpredictable ways)
- Fine-tuning of multiplicity gives better criticality results
- Delayed neutron emission may be required for calculations on a longer time scale

k_{eff}	Benchmark	This work
GODIVA	1.0000±0.0010	1.007
Jezebel	1.0000±0.0020	1.002
STACY-30	0.9973±0.0009	0.994
Rossi α [10 ⁴ generations/s]	Benchmark	This work
Rossi α [10 ⁴ generations/s] GODIVA	Benchmark 111±2	This work

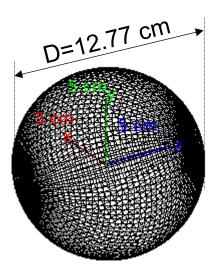
05 Summary

- Neutron fission counter is a valuable tool for counting neutrons over a broad energy domain
- New fission model has been developed in GEANT4, enabling extensive studies on spontaneous, neutron-induced fissions, and photo-fission
- The model was validated with experimental data for several nuclides in terms of fission fragments, secondary particle productions
- Criticality calculations for the well-known criticality systems with the model show good results
- The GEF-based fission model allows users to study various fissile and fissionable nuclides as new candidates for sensitive materials in neutron measurements

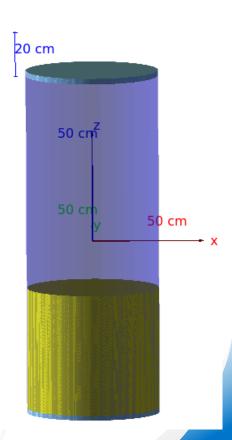


THANK YOU

04 Simulation Results


- Criticality calculation: GODIVA
 - Handbook ID: HEU-MET-FAST-001
 - Bare sphere of highly-enriched Uranium (HEU)
 - **Material composition** (ρ =18.74 g/cm³)
 - U-234 1.02%
 - U-235 93.71%
 - U-238 5.27%
 - Simulation time: 500 ns
 - A timing cut-off was applied to reduce CPU costs
 - Otherwise, there is a possibility that calculations do not be completed for $k_{eff} \geq 1$

04 Simulation Results


- Criticality calculation: Jezebel
 - Handbook ID: PU-MET-FAST-001
 - Bare sphere of Plutonium
 - **Material composition** (ρ =15.61 g/cm³)
 - natGa 3.413%
 - Pu-239 91.951%
 - Pu-240 4.346%
 - Pu-241 0.290%
 - Simulation time: 500 ns

04 Simulation Results

- Criticality calculation: STACY-30
 - Handbook ID: LEU-MET-SOL-THERM-007
 - Low-enriched Uranium solution thermal system
 - **Material composition** (ρ =1.4571 g/cm³)
 - H 6.569%
 - N 4.495%
 - O 68.982%
 - U-234 0.016%
 - U-235 1.989%
 - U-236 0.002
 - U-238 17.947%
 - Thermal scattering on the following nuclides was considered
 - Hydrogen, nitrogen, U-235, U-238
 - Simulation time: 2 ms

