

Introduction of a new test area for neutron detection instruments with a dominant high-energy neutron component at PSI

S. Mayer¹, M. Bolzonella¹, S. Harzmann¹, E. Hohmann¹

¹Department of Radiation Safety and Security, Paul Scherrer Institute, Villigen PSI, Switzerland

Workshop on Neutron Beams at High Energy: Applications and Metrology, Vienna, July 7-8, 2025

Contents

- Motivation neutron stray fields at the Paul Scherrer Institute
- Future reference facility layout
 - Field monitoring and measurement positions
- Characterization by means of measurements and calculations
- Summary and future work

Paul Scherrer Institute - a federal research lab with focus on large scale research facilities

Paul Scherrer Institute - Neutron calibration facility

30.07.2025

Paul Scherrer Institute - Proton accelerator I

5 30.07.2025

Paul Scherrer Institute - Proton accelerator 2

Paul Scherrer Institute - Large scale research facilities

Paul Scherrer Institute - Electron accelerators

Paul Scherrer Institute - Summary of neutron stray fields

- Many neutron stray fields around PSIs high-energy accelerators and its applications have a significant component of neutons with energies greater 20 MeV
- Areas are accessible: personell need to surveyed adequately
- Easy accessible and timely available area for development and calibration of dosemeters and survey instruments

Location of the new reference facility

Facility layout: Side view

Facility layout: Side view

Beamline uncovered during the service period

Facility layout: Top view

- Field monitoring: Three survey instruments, Proton current monitor upstream the target
- Two main reference positions RP with spectral information
- Additional positions available (only dose information)
- 13 Position with reduced shielding available

Beam properties and field monitoring

Proton current

- Normal production conditions
- Periodically supplies a different experiment (5 s)
- Current indication up- and downstream the target varies with less than 2%

Neutron monitor readings

 Measurements ~60 days with an integration time of 10 s shows a stable indication

Characterization: Spectra Measurements and Calculation I

Measurement: PSI-Extended Range Bonner Sphere Spectrometer

- 10 PE moderator spheres and 4 with metal inlays [1]
- Characterized by Monte Carlo simulations, benchmarked in reference fields available at PTB and CERF [2]
- Data evaluation: Bayesian Parameter Estimation with a parametrized model or Maximum Entropy Unfolding [3]

Calculation: Simplified geometrical model using FLUKA [4]

- Localized loss point: Graphite Target and Collimator
- First shielding layer: Iron without infrastructure openings
- Second layer: Air-filled service area
- Third layer: Concrete
- [1] B Wiegel, A.V Alevra. NEMUS—the PTB Neutron Multisphere Spectrometer: Bonner spheres and more, NIMA, 2002
- [2] F. Pozzi, M. Silari. The CERN-EU high-energy Reference Field (CERF) facility: New FLUKA reference values of spectral fluences, present and newly proposed operational quantities, NIMA, 2020
- [3] M. Reginatto. Overview of spectral unfolding techniques and uncertainty estimation, Radiation Measurements, 2010
- [4] G. Battistoni et al. Overview of the FLUKA code, Annals of Nuclear Energy 82, 2015.

Characterization: Spectra Measurements and Calculation II

- The spectral neutron distribution for Position RP0 obtained by Bayesian Parameter
 Estimation (BPE) and Maximum Entropy Unfolding with calculations as pre-information show good agreement
- Integral reference values for **Position RP0** as an example

Characterization: Measured and calculated dose distribution

- Dose distribution was measured with Extended Range REM counters [5]
- Simplified geometrical model reproduces the gradient with acceptable agreement
- Introduction of more details necessary (Reduced Shielding not included)

Summary and outlook

- Our new reference field above the PSI target E has a dominant contribution of neutrons with energies greater than 20 MeV
- The field was characterized by measurements and calculations
- The field monitoring was verified to be suitable by long term measurements
- The measurement positions are easy to access

Conclusion: The facility is suitable for calibrating and testing survey instruments and dosemeters

Outlook

- Investigating the position with reduced shielding in more detail
- Performing Monte Carlo simulations with a more detailed geometrical model
- Studying the dose gradient using passive detectors
- Conducting an intercomparison exercise with different REM-counters

Thank you for your attention

Department of Radiation Safety and Security Forschungsstrasse 111 5232 Villigen PSI Switzerland www.psi.ch/ASI

