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Motivation  

• CSEWG criticisizes each release of the neutron standards evaluation. In

particular, the Group have expressed concerns on the ‘small’

uncertainties of the neutron standards. So, we should try to find the

additional arguments to justify the results of the neutron standards

evaluation

• Is it possible to get progress in the evaluation methodology, especially in

ways to take USU into account?



Motivation (continued) 

• Results of nuclear data evaluation carried out with statistical methods

are usually presented as a vector of evaluated values and corresponding

covariance matrix. As a rule for the same object (cross-section, angular

distribution, neutron spectrum) there is a set of evaluations performed

within the framework of various physical and statistical models. For this

reason, there is a necessity to compare the uncertainty information

presented in the covariance matrices

• In addition, a verification of the evaluated data is possible by means of

comparison of the experimental and evaluated data covariance matrices.

Exceeding evaluated uncertainty over experimental one indicates error in

calculations



Comparison of the covariance matrices  

The covariance matrices can be compared in different ways in dependence

of definition

1) matrix C is larger than matrix B if matrix D = C - B is positive definite

(D>0)

2) matrix C is larger than matrix B if tr(C) > tr(B), where tr(C) – trace of the

matrix C; tr(C) – sum of variances of the components of the random

vector in n-dimensional space where basis is represented by

eigenvectors

3) matrix C is larger than matrix B if det(C) > det(B), where det(C) –

determinant of the matrix A

tr(C) and det(C) can be considered as uncertainty of the random

vector (integral uncertainty)



Definition of uncertainty of  the random vector
(integral uncertainty)

Let’s define an uncertainty  for a random vector 


 distributed 

over law with probability density ),...,( 1 nxx   as a volume of domain 

D around the mathematical expectation b
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Choosing an integration domain

 The most preferable variant – hyper ellipsoid D = 
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 in this case the domain is limited by a surface of equal 

probability 

 for given value α such the choice provides the smallest 

square of domain D 

 allows for analytical integration for small n 

. 



Bivariate normal distribution

The integral (2) can be rewritten as 
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Bivariate normal distribution (continued )

we get value for the integral (3)  
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Bivariate normal distribution (continued)

So, the uncertainty of a random vector 


 distributed over bivariate 

normal law equals to an area )(2 
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where a portion  of the distribution is concentrated: 
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where R – correlation matrix, C - covariance matrix.  

All the information on the shape of the ellipse and its orientation is 

determined by the elements of covariance matrix (see Fig.1). 
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Fig.1 Scattering ellipse for a random vector distributed over bevariate normal law

          with zero mathematical expectation. 
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Generalization to the multidimensional random vector

 

For arbitrary dimension n we have a hyper ellipsoid (instead of 

ellipse) and the volume of hyper ellipsoid is proportional to the value 

Cdet  (C  - covariance matrix) 

)(


nV   Cdet       (17) 

For this reason the determinant of a covariance matrix can be used as 

a measure of uncertainty for a random vector. 

 



Value of determinant of the correlation matrix (3x3)
in dependence on correlation
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Values of determinant
change in a such manner
that makes it possible
compensation more small
uncertainties of
components of the
random vector by more
large correlations
between components
keeping a value of the
determinant unchanged
(in the range where
detR>0)



Example 1. Evaluation of the U235 fission cross-section in the range 
1 – 2 MeV with taking USU into account be different techniques.

Experimental data 

• 19 experiments, 85 measurements at 7 neutron energies - nodes (1, 1.1,

1.25, 1.4, 1.6, 1.8, 2.0 MeV)

• the cross-section is relatively flat in the energy range

• 8 experiments cover all the energy range

• experimental cross-section uncertainties consist of statistical and

systematic components; the latter one is represented by the

normalization uncertainty

• the normalization uncertainty exceeds the statistical one essentially to

provide relatively strong correlation over energy range

• unknown parameters to be evaluated – cross-sections at 7 nodes and

their covariances



Example 1. Evaluation of the U235 fission cross-section in the range 
1 – 2 MeV with taking USU into account by different techniques. 

List of experiments 

Number Reference
Energy range, 

MeV
Number of

measurements

1 Wasson 1982 1.00 – 1.25 3

2 Carlson 1984 1.00 – 2.00 7

3 Kari 1978 1.00 – 2.00 7

4 Kaeppeler A 1972 1.10 – 1.25 2

5 Kaeppeler B 1972 1.00 – 1.10 2

6 Barton 1976 1.00 – 2.00 7

7 White 1965 1.00 – 1.00 1

8 Szabo 1970 1.00 – 1.00 1

9 Szabo 1973 1.00 – 2.00 7

10 Carlson 1978 1.00 – 2.00 7



Example 1. Evaluation of the U235 fission cross-section in the range 
1 – 2 MeV with taking USU into account by different techniques. 

List of experiments (continued)

Number Reference
Energy range, 

MeV
Number of

measurements

11 Czirr 1976 1.00 – 2.00 7

12 Poenitz 1977 1.10 – 1.80 5

13 Poenitz A 1974 1.00 – 2.00 7

14 Poenitz B 1974 1.00 – 2.00 7

15 Yan 1975 1.00 – 1.00 1

16 Diven A 1957 1.00 – 1.60 5

17 Diven B 1957 1.25 – 1.25 1

18 Allen 1957 1.00 – 2.00 3

19 Carlson 1991 1.10 – 2.00 6



Example 1. Evaluation of the U235 fission cross-section in the range 
1 – 2 MeV with taking USU into account by different techniques. 

Experimental data 

Neutron energy, MeV
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Example 1. Evaluation of the U235 fission cross-section in the range 
1 – 2 MeV with taking USU into account by different techniques. 

Evaluated cross-sections (b) and their uncertainties (%)

Energy,

MeV
GMA

GMA+

USU (ad-hoc)

GMAPy+USU

(MC sampling)

Pade2+USU

(variance 

analysis) 

1.0 1.1980 ± 0.46 1.1924 ± 0.48 1.1957 ± 0.81 1.1990 ± 0.75

1.1 1.1917 ± 0.45 1.1840 ± 0.47 1.1943 ± 0.60 1.1905 ± 0.74

1.25 1.2008 ± 0.45 1.1956 ± 0.46 1.2052 ± 0.51 1.2002 ± 0.74

1.4 1.2256 ± 0.46 1.2247 ± 0.48 1.2193 ± 0.46 1.2260 ± 0.75

1.6 1.2598 ± 0.45 1.2566 ± 0.46 1.2518 ± 0.42 1.2552 ± 0.54

1.8 1.2709 ± 0.45 1.2690 ± 0.47 1.2649 ± 0.44 1.2744 ± 0.55

2.0 1.3014 ± 0.45 1.3100 ± 0.47 1.2866 ± 0.61 1.3010 ± 0.54



Example 1. Evaluation of the U235 fission cross-section in the range 
1 – 2 MeV with taking USU into account by different techniques. 

Evaluated cross-sections
GMA, Test1

Neutron energy, MeV
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Example 1. Evaluation of the U235 fission cross-section in the range 
1 – 2 MeV with taking USU into account by different techniques. 

Uncertainties of the evaluated cross-sections



Example 1. Evaluation of the U235 fission cross-section in the 
range 1 – 2 MeV with taking USU into account by different 

techniques. Comparison of integral uncertainties

GMA
GMA+

USU (ad-hoc)

GMAPy+USU

(MC sampling)

Pade2+USU

(variance 

analysis) 

, b 1.485 - 2 1.537 - 2 1.828 - 2 2.158 - 2

1.537 - 18 3.022 - 18 1.263 - 16 1.921 - 17

)C(tr

• Trace and determinant of covariance matrix are integral characteristics providing

additional uncertainty information for the evaluated data 

• Taking USU into account by different techniques leads to increasing both the

differential and integral uncertainties of the evaluated cross-sections

• There isn’t a method that provides uniquely the best result for the entire set of

integral characteristics

7
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Example 2. Evaluation of the Li6(n,t) reaction cross-section in the 
range 2.5 – 800 KeV without taking USU into account

• 5 experiments (Fort 70, Poenitz 72, Fort 72, Friesenkahn 74, Lamaze 78)

• 1 resonance

• 2 experiments cover all the energy range

• GMA and PADE2 (9 parameters) calculations were carried out

• the experimental and evaluated data were folded in 9 energy groups; the

group cross-sections and their covariances (for the experimental and

evaluated data) were calculated

• integral characteristics for the covariance matrices were calculated and

compared



Example 2. Evaluation of the Li6(n,t) reaction cross-section in the 
range 2.5 – 800 KeV without taking USU into account.

Experimental and evaluated data



Example 2. Evaluation of the Li6(n,t) reaction cross-section in the 
range 2.5 – 800 KeV without taking USU into account.

Limits of energy groups for folding pointwise cross-sections

Number Limits, keV Number Limits, keV

1           2.50 – 8.50 6 245 - 300

2           8.50 – 45.0 7 300 - 425

3           45.0 – 100 8 425 - 570

4           100 – 200 9 570 - 800

5 200 - 245



Example 2. Evaluation of the Li6(n,t) reaction cross-section in the 
range 2.5 – 800 KeV without taking USU into account.

Comparison of integral and pointwise (δ) cross-section uncertainties

experiment GMA Pade2 

, b 6.542 - 2 5.138 - 2 2.305 - 2

4.775 - 19 1.253 - 19 1.098 - 19

δ, % 4.04 2.12 1.17

)C(tr

9
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• As expected both the integral and differential (pointwise) uncertainties of 

measured cross-sections exceed the uncertainties of evaluated cross-

sections 



Example 3. Evaluation of alpha emission probabilities in Cm-244 decay

  



Example 3. The evaluated Cm-244 alpha emission probabilities for 
the most intense transitions from different evaluations

N E(α), keV [1] DDEP ENDF/B-VII.1 JEFF-3.1 

0 5805 76.76 (10) 76.7 (4) 76.9 (1) 76.6 (1)

1 5763 23.21 (10) 23.3 (4) 23.1 (1) 23.4 (1)

2 5665 0.0204(6) 0.0204(15) 0.0204(15) 0.027(3)

• All the evaluations look consistent within declared uncertainties

[1] Applied Radiation Isotopes v.109, p.164, 2016



Example 3. Correlation matrix of the Cm-244 alpha emission 
probabilities (in percent)

 

α-in-

dex 
0 1 2 3 4 5 6 7 8 9 

0 100          

1 -99.9 100         

2 0 0 100        

3 0 0 5 100       

4 0 0 0 0 100      

5 0 0 3 60 0 100     

6 0 0 0 12 0 14 100    

7 0 0 -5 0 0 18 6 100   

8 0 0 4 69 0 71 4 32 100  

9 0 0 0 15 0 3 11 7 18 100 

 



Example 3. Confidence regions of the evaluated Cm-244
(0,0) and (0,1) alpha emission probabilities
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Fig.1 Confidence regions of evaluated (0,0) and (0,1) absolute alpha emission probabilities
          in decay of Cm-244 from this work and the ENDF/B-VII.1, JEFF-3.1 evaluations.  

 
• in spite of consistency of single evaluations for the (0,0) and (0,1)

absolute emission probabilities the evaluations (as 2-dimensional vectors)

are inconsistent since the confidence regions haven’t common areas

• consideration of uncertainties for the components of the evaluated

multidimensional vector separately from correlations can lead to false

conclusions



Statistical invariants. Description of model

The measurements 
k

ik
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Statistical invariants. LSM - solution

In case of linear model function the LSM formulae for an estimation of

unknown vector of parameters and its covariance matrix W are well

known

where X – matrix of sensitivity coefficients of the model function relative to

the parameters

Covariance matrix R of evaluated values of the model function can be

calculated as
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Statistical invariants. Interpretation of the evaluation process

• As known from classical mechanics conserving values (for example,

energy of closed system or other integrals of motion) are of special

importance for analysis of n – particle system

• set of the experimental data with covariances , i = 1,…,n can

be interpreted as a system of n particles with coordinates ; the

interaction between particles is described by the values

• in turn, statistical processing can be interpreted as a transition of the n –

particle system from one state to another one

• so, it is reasonable to search a characteristics of the system which

conserve at transition
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Statistical invariants (conservation laws) 

For a linear model function there are strict relationships between the

characteristics of the system in original and final states (for nonlinear model

function the relationships are approximate)

where weights are determined as follows

Thus, the evaluated values and their covariances are result of a

redistribution of the experimental values and their covariances .

The redistribution is managed by the weights .
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Statistical invariants. Meanings 

The invariants have a clear statistical meanings
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Variance of the average (weighted in special

way) value of the model function in the range

under consideration



Statistical invariants.
Enequalities imposing restrictions on the experimental covariances

from positivity of weights

from positivity of variance

of the physical quantity
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Statistical invariants. Example. 
Evaluation of the 9Be(d,α0) differential reaction cross-section at 

deutron energy 3 MeV. Results of measurements [2]

 

angle, 
grad 

c-section, 
mb/ster 

Uncertainty,%  
Angle, 
grad 

c-section, 
mb/ster 

Uncertainty,%  

17.7 5.01 10 90.2 3.28 8 
23.5 4.87 7 100.4 3.22 7 

35.2 4.37 7 110.2 3.09 7 

40.9 4.13 7 119.8 2.60 8 
46.7 3.72 7 129.0 1.90 8 

57.9 2.87 7 137.9 1.73 7 
69.0 2.81 7 146.7 1.34 7 

79.7 3.14 8 163.5 1.46 9 
 

[2] Generalov L.N. et al., “LI Meeting on Nuclear Spectroscopy and Nuclear
Structure”, P. 187. Sarov, RFNC-VNIIEF, 2001 [in Russian], EXFOR F0530



Statistical invariants. Example. 
Evaluation of the 9Be(d,α0) differential reaction cross-section at 

deutron energy 3 MeV. Plot of the experimental data

-1.0 -0.5 0.0 0.5 1.0

COS 

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Д
иф

ф
ер

. с
еч
ен

ие
 [
м
б/
ст
ер

]

Рис.2  Оцененное дифференциальное  сечение реакции 9Be(d,a0) в сравнении с эксперименталь-
            ными данными Генералов 2001 при энергии дейтронов 3 МэВ.

Генералов 2001

E = 3 МэВ



Statistical invariants. Example. 

Evaluation of the 9Be(d,α0) differential reaction cross-section. 

Evaluated coefficients of  Legendre polynomial   

.  

 𝜽𝟒
𝟎 𝜽𝟒

𝟏 𝜽𝟒
𝟐 𝜽𝟒

𝟑 𝜽𝟒
𝟒 

2.968 1.464 0.01839 1.020 0.8686 
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Statistical invariants. Example. 

Evaluation of the 9Be(d,α0) differential reaction cross-section. 

Covariances (x1000) of evaluated coefficients of  Legendre polynomial 
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 Number  0 1 2 3 4 
        

𝜽𝟒
𝟎 0  3.517     

𝜽𝟒
𝟏 1  1.770 7.577    

𝜽𝟒
𝟐 2  -1.874 4.912 17.55   

𝜽𝟒
𝟑 3  1.238 0.3945 6.929 23.78  

𝜽𝟒
𝟒 4  2.701 0.1747 -0.7937 10.96 24.58 

 



Evaluation of the 9Be(d,α0) differential reaction cross-section. 

Checking the statistical invariants  
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Summary

• Input experimental data (results of measurements and their covariances)

predetermine the evaluated data and their covariances calculated by the

LSM for any linear model function;

• As follows from the conservation laws relative decreasing (increasing)

uncertainties of the evaluated data leads to pumping uncertainty

information into the off-diagonal covariances

• strict relationships between input experimental data and output

evaluated data, restrictions imposed to the covariances of the

experimental errors provide verification both the final and intermediate

results of calculations

• Integral uncertainties of the random vector (trace and determinant of

covariance matrix) provide additional uncertainty information for the

evaluated data

• As seen today the adequate processing of USU (inconsistent

experimental data) is a key for getting reliable uncertainty information for

the evaluated data


