Fission induced by high energy neutrons on ²³⁵U at n_TOF: final results, impact and future perspectives

Alice Manna and Elisa Pirovano for the n_TOF Collaboration

IAEA Technical Meeting on Neutron Standards - 27-31 January 2025

E. Pirovano *et al* 2023 *JINST* **18** P11011 A. Manna *et al* 2023 *JINST* **18** P04024

IN

....

10² Neutron Energy, MeV E. Pirovano *et al* 2023 *JINST* **18** P11011 A. Manna *et al* 2023 *JINST* **18** P04024

The measurement

E. Pirovano *et al* 2023 *JINST* **18** P11011 A. Manna *et al* 2023 *JINST* **18** P04024

The measurement

The Uncertainties

The energy range studied in different regions

 \rightarrow different detectors used or different working conditions

	Uncertainty En = [10-27] MeV	Uncertainty En = [28-38] MeV	Uncertainty En = [38-140] MeV	Uncertainty En > 140 MeV		
Systematics		4.5%	4.5%		xs extracted with	
Statistics		2.4-3.5%	2.2-7.3%		FC and 3s-RPT	
Systematics	6.5%		3.5%	4.0-4.3%	xs extracted with	
Statistics	2.5 - 4.2%		2.7 - 3.6%	2.6 - 3.7%	PPAC and MS-RP	
			1.7 - 2.2%		Correlated	
Total	578106	5759%	3.7-4.9%	1 8 5 606		
	0.7-0.170	J.1-J.2 70		4.0-0.0%	Final	

- xs extracted with FC and 3s-RPT
- xs extracted with PPAC and MS-RPT

Correlated

...for FF events PPFC related

Contribution	Uncertainty (average)	Single deposit	
²³⁵ U mass fraction	0.0014 %	0.0014 %	
²³⁵ U mass per unit area	0.2%	0.6 %	
235 U effective density correction $k_{\rm U}$	0.6%	1-2.5 %	
Zero-bias efficiency	1.3 %	1.1-1.3 %	
Efficiency, extrapolation below thr.	3 %	2-4.5 %	
Dead-time correction k_{τ}	0.2%	0.04-0.2 %	

...for neutron flux measurement 3s-RPTs related

The Uncertainties

...for FF events PPAC related

Source of	Uncertainty	Uncertainty
uncertainty	$E_n < 200 \text{ MeV}$	$E_n > 200 \text{ MeV}$
Sample mass	1.0%	1.0%
Trajectories reconstruction	0.4%	0.4%
Efficiency calculation fit	2.0%	2.0%
Anisotropy correction	1.2%	-

...for neutron flux measurement MS-RPTs related

Contribution	Uncertainty	Source of	Uncertainty	Uncertainty	Uncertaint
Beam transmission through PPFC, PPAC	0.5%	uncertainty	$\mathbf{E}_n = [10\text{-}30] \text{ MeV}$	$\mathbf{E}_n = [38\text{-}200]~\mathrm{MeV}$	$E_n > 200 MeV$
Isotopic composition of PE	1.5 %	C.H. mass	0.4%	0205%	02050
Areal density of PE sample	0.2-0.6 %	C mass	1.407	0.2-0.576	0.2-0.37
Areal density of C sample	0.2-0.9 %	C mass Simul Reconstruction	1.470	0.5-0.6%	0.5-0.07
Cuts the ΔE -E matrix for selecting proton events	0.5 %	Dead time compation	1.0%	0.3%	1.09
Fit of MCNPX simulations to the experimental light-output distributions	≤2.5 %	Cute in the AEE metric	2.0%	1.0%	1.07
Effective area of the ΔE_2 detector	0.5 %	Cuts in the ΔE -E matrix	0.0%	2.0%	2.0%
Distance of the detectors from the PE or C sample	0.8%	Telescope angle	0.6%	0.9%	1.0%
Angle relative to the neutron beam	0.1-0.6 %	Telescope position	0.7%	0.7%	0.79
Dead-time correction	0.5-1.0 %	Beam transmission	0.8%	0.8%	0.8%

Physics Letters B 860 (2025) 139213

The obtained cross section

Impacts

The obtained cross section

Obtained cross section compared with calculation with INCL/Abla07

Impacts

The obtained cross section

@ Alberto Ventura

Normalization of the cross section obtained with respect to ²³⁵U(n,f) with our new data:

²³⁸U(n,f) first preliminary example

Preliminary

The obtained cross section

The inelastic scattering

a start detector : plastic scintillator

a stop detector: a plastic scintillator "wall"

2 m far from the start- 60 × 60 cm² divided in 20 bars – 3 cm each

coupled with 2 PMT – 1 PMT at each side of the bars

 Δt (elastic - inelastic protons) = 440 ps

Time resolution of 300 ps

Future perspectives Re-TOF: Start-TofWall coincidences

From Test @EAR1

Expected TOF of elastic scattered protons $(TOF_{TW} - TOF_{ST})_{el} \simeq TOF_{p,el}(E_{p,el})$

Future perspectives Re-TOF: Start-TofWall coincidences

From Test @EAR1

Expected TOF of elastic scattered protons $(TOF_{TW} - TOF_{ST})_{el} \simeq TOF_{p,el}(E_{p,el})$

The complete setup

INF

Lisowski, 1991

²³⁹Pu(n,f) cross section

[0.5 - 260] MeV 1.7²u-239(n,f)/U-235(n,f) 1.6 Staples, 1998 1.5 [0.85 - 62] MeV 1.4 Shcherbakow, 2002 1.3 [1 - 200] MeV 1.2 1.1 Tovesson, 2010 [0.01 eV - 200 MeV] Norm. diff. to IAEA 0.1 Lisowski - IAEA Tovesson - IAEA 0.05 Snyder, 2021 0 [0.1 - 100] MeV -0.05 -0.1

²³⁹Pu(n,f) cross section

²³⁹Pu(n,f) cross section

Identify the fission caused by neutrons with an energy from thermal up to 1 GeV.

Requirements:

Very good time resolution

- Keep Low sensitivity to the γ-flash
- ^{IIIII} Good discrimination between α particles and FFs (²³⁹Pu activity ~2 MBq/mg).

PPAC ensemble:

9 target slots and 10 PPACs tilted by 45° with respect to the neutron beam direction

²³⁹Pu material from JRC-Geel

Measurement with ²³⁵U(n,f) cross section as reference from thermal energy up to GeV

n,p elastic scattering in the high energy range

2 REFERENCE CROSS SECTIONS

Conclusion

Final data for the ²³⁵U(n,f) cross section extending the measured cross section of about 200 MeV

The detectors development for new projects is ongoing for the measurements:

- ²³⁵U(n,f) cross section from few MeV with better statistics wrt this results
- ²³⁹Pu(n,f) cross section from thermal up GeV, wrt 2 different reference xs

The paper was (finally) accepted December 2024, we are going to prepare for EXFOR 4 entries, in collaboration with Naohiko and Emmeric:

- cross section obtained with PPFC and 3S-RPT
- cross section obtained with PPAC and MS-RPTs
- average cross section obtained
- smoothed cross section in the high energy region (from 150 MeV)

neutron Time Of Flight

The n_TOF facility

Experimental setup

$$\sigma_{f}(E_{n}) = \frac{N_{f}(En)}{n_{U}\varepsilon_{f}} \cdot \frac{1}{\Phi(En)} = \underbrace{\frac{N_{f}(E_{n})}{nU\varepsilon_{f}} \frac{nH\varepsilon_{p}\Omega}{N_{p}(E_{n})} \frac{d\sigma_{(n,p)}}{d\sigma_{(n,p)}} d\Omega}_{N_{p}(E_{n})}$$

Experimental setup

PPFC – Parallel Plate Fission Chamber

• separate read-outs

NTOF

INFN

PPFC – Parallel Plate Fission Chamber

PPAC – Parallel Plate Avalanche Counters

PPAC – Parallel Plate Avalanche Counters

PPAC – Parallel Plate Avalanche Counters

Recoil Proton Telescope - 3s-RPT

Radiator - C_2H_4 proton

neutrons

INFN

- + 3 plastic scintillators in 3 different configurations :
 - 0.5 mm, 0.5 mm, 50 mm (30-100) Me'
 - 1 mm, 1 mm, 50 mm (35-100) MeV
 - 2 mm, 2 mm, 100 mm (50-150) MeV

Recoil Proton Telescope - 3s-RPT

Recoil Proton Telescope - MS-RPT

Recoil Proton Telescope - MS-RPT

