

NEXSHARE:

IAEA Network for Experiments and Code validation Sharing for SMRs and Advanced Reactors

Technical Meeting on Advances and Innovations in Fast Reactor Design and Technology

Benoît Lepouzé, on behalf of:

Eve-Lyne Pelletier, <u>e.pelletier@iaea.org</u>
Xiaoyu Zhang, <u>xi.zhang@iaea.org</u>
International Atomic Energy Agency
Nuclear Energy Department, Nuclear Power Division

Background: NHSI Industry Track

Effective Global Deployment of Safe and Secure Advanced Nuclear Reactors

Harmonization of Regulatory Approaches Track

Harmonization and

Standardization of

Industrial Approaches

Track

- WG1: Framework for information exchange
- WG2: International pre-licensing regulatory reviews
- WG3: Leveraging other regulatory reviews

Regulators

Governments

IAEA as facilitator within and between the tracks

Technology Holders

• Topic and St

- Topic 1: Harmonization of high-level user requirements
- Topic 2: Information sharing on Codes and Standards
- Topic 3: Experimental Testing and Validation for Design and Safety Analysis Computer Codes
- **Topic 4:** Acceleration of nuclear infrastructure implementation for SMR

Operators and other end-users

International
Organisations
and Associations

Topic 3: Experimental Testing and Validation for Design and Safety Analysis Computer Codes

The focus of this Topic was to establish a global cooperation mechanism for experiments and code validation for SMRs, between entities operating experimental facilities, technology holders and potentially TSOs.

The **general objectives** of Topic are to:

Share information on existing experimental programs. Identify potentials for resource sharing and synergies.

Provide greater reach and enhanced utilization of existing experimental facilities.

Provide greater confidence on data and codes used in safety cases.

Reduce costs and increase schedule certainty of experiments and code validation needed for SMRs.

Phase I (2023-2024)

Phase II (2025-2026)

During the first phase, we have established a network to serve as a global cooperation mechanism for sharing of experiments and code validation for design and safety analysis computer codes (NEXSHARE).

Note: sharing information on experiment and code validation does not necessarily mean sharing data, but identifying what is available, what work is being conducted, what are the gaps and what facilities are currently available. Agreeable conditions for sharing (data or resource) are to be established between interested parties.

NEXSHARE – Members

The NEXSHARE network is an international community of professionals promoting information sharing and collaborations on experimental programmes, code validation, and available experimental facilities for SMRs.

Members:

SMR Design Organizations: 23 participating organization from 13 MS, and more to come! CNEA, Terrestrial Energy, CNNP, SPIC, CGN, Copenhagen Atomics, Seaborg, Jimmy, Nuward, Mitsubishi, International Thorium Molten-Salt Forum, Toshiba, Thorizon, KAERI, Raten ICN, Rosatom, STL Nuclear, Rolls-Royce SMR, General Atomics, GE-Hitachi, Last Energy, Kairos Power SHARE

- Experimental Facilities & Codes Developers
- TSO
- In collaboration with the OECD/NEA, the GEN-IV Forum and the European Commission for further synergies.

Technologies included:

High Temperature **Gas Cooled Reactors**

Liquid Metal **Fast Reactors**

Molten Salt Reactors

NEXSHARE – Governance and Web Interface

A Steering Committee (SC) has been appointed to provide strategic guidance and oversight to the Network.

The SC members are experts in experimental facilities and code validation for SMRs.

Their responsibilities include:

- Setting the overall direction and goals of the Network,
- Providing guidance on network activities and initiatives, and
- Ensuring alignment with the network's objectives and mission.

Representatives of collaborating International Organizations are sitting at the SC.

Web Interface / Portal:

- Centralizes/links to the information, events, publications and projects relevant to the topic, from different organizations.
- Means to contact the members and create opportunities for sharing and initiating bilateral collaborations.

NEXSHARE – Database of Experimental Facilities

Database of Experimental Facilities Applicable to SMRs

- Available from the NEXSHARE web interface, continuously expanded and updated.
- Through filtering and search, members can find facilities that can be contact for access existing data or generate new data needed for code validation.
- Built on projects from / with the collaboration of the OECD/NEA and Gen-IV Forum
- Focus:
 - Support code validation for design and safety analysis of SMRs
 - Thermalhydraulics (separate & integral effects), neutronics, component/feature, severe accident & containment
- Through a template, participating facilities provided:
 - General and technical description,
 - · Contact details,
 - Record of experiments and planned experiments
 - · QA program and IP considerations.

NEXSHARE – First Workshop

First Workshop (18-21 June 2024) & launch of NEXSHARE:

- ✓ Great example of collaboration between the IAEA, OECD/NEA and GIF.
- ✓ Discussed the different experimental testing and code validation programmes, industry and regulatory perspectives on code usage and validation for SMRs, and potential for collaborations.
- ✓ Discussed the next steps for the Network

Join the Network!

Next Steps – 2025-2027

Now that the Network is established, the next phase will focus on expanding the network, add functionalities and launch technology-specific collaborative work under the umbrella of NEXSHARE.

NEXSHARE Phase 2

- ✓ Continue to populate the Network and its database.
- Consolidation with existing IAEA databases.
- Add functionalities to further facilitate access and sharing of experiments.

Technology-Specific Work

- ✓ Form working groups to produce technology-specific deliverables.
- Detailed workplans under definition based on industry needs.

Information Sharing

- conferences, webinars.
- ✓ 2nd NEXSHARE Workshop planned in 2026.
- ✓ More details on ongoing

International Collaboration

international organizations

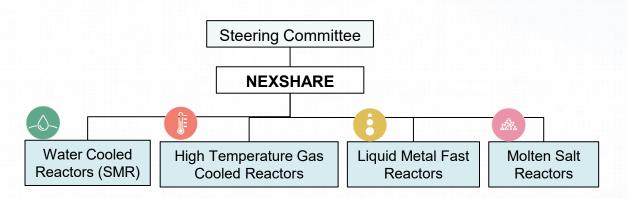
More organizations to join for

Continue alignment with

increased international

and projects.

collaboration.



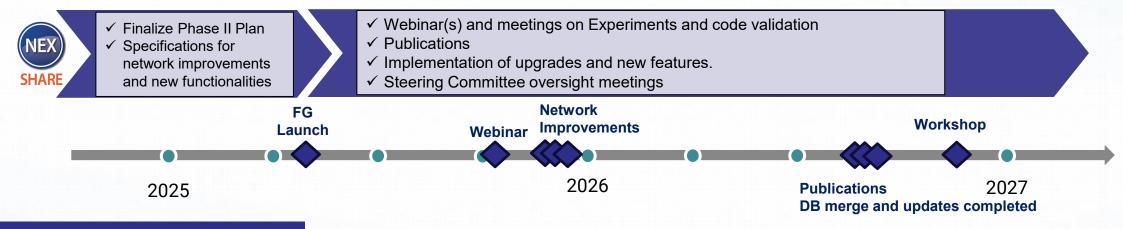
NEXSHARE – 2025-2027

Network Enhancements:

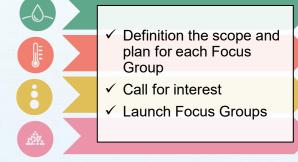
- Visual and functional improvements
- Enhanced search capabilities in the database (e.g. per phenomena)
- Inclusion of decommissioned facilities
- Report generation & performance metrics
- Workflows for maintenance and upgrade

Launch of Focus Groups (FGs):

FGs were launched on 17 June through a Steering Committee meeting.


Scope:

- Expand the database and merge with existing ones (LMFNS, SANIS, HTGR DB) ** priority
- Review relevant work from International Organization, and identify priorities for the technology
- At least one webinar and working paper per group on industry priorities
- Strong collaboration with GIF, NEA & EC -> find synergies between the different ongoing projects


NEXSHARE – Timeline for Phase 2

Steering Committee – General Scope

Technology-specific Focus Groups

- ✓ Update Database and merge with existing ones (if applicable)
- ✓ Technology-specific work and publications
- ✓ Focussed webinars and meetings
- ✓ Collaboration & synergies with GIF, NEA, EC

NEXSHARE – Content of the LMFR Focus Group

Team: Nicole Virgili (IAEA), Vladimir Kriventsev (IAEA), Mariano Tarantino (ENEA), LMFNS Experts (under the umbrella of the TWG-FR)

General Scope

International collaboration

Prepare a working paper and webinar summarizing relevant work by International Organizations and incorporate the findings in the Network

R&D needs and Tools

Develop a working paper and webinar on R&D needs for liquid metal-cooled reactors and status of numerical tools validation

LMFNS database Update

Harmonise with existing databases, update templates, facility contact points and operating data and connect it to NEXSHARE.

Next Steps

Propose future experiments and code validation activities for LMFRs.

Deliverable	Date/Status
LMFR template agreed on.	June 2025
Contact points updated	Q3 2025
Populate the template with LMNS facilities. Concurrence granted and Information on facilities uploaded in the	Q4 2026
databases	

Conclusions

Share information on existing experimental programs. Identify potentials for resource sharing and synergies.

Provide greater reach and enhanced utilization of existing experimental facilities.

Provide greater confidence on data and codes used in safety cases.

Reduce costs and increase schedule certainty of experiments and code validation needed for SMRs.

Phase 1 (2023-2024)

Phase 2 (2025-2026)

To support the industry with an initiative that contributes to providing greater confidence in data and computer codes used in safety cases for global deployment of SMR and Advanced Reactors, the IAEA is:

- ✓ Setting up the NEXSHARE Network,
- ✓ Populating a database of experimental facilities for SMRs & Advanced Reactors,
- ✓ Collaborating with NEA, GIF, EC
- ✓ Initiating technology specific focus groups,
- ✓ Organizing events and providing opportunity to define collaborations.

The meeting participants are welcome to:

- ✓ Provide their comments/suggestion for the LMFR Focus Groups work in NEXSHARE.
- ✓ Join the Network and participate to its events!

Acknowledgments

IAEA would like to express sincere gratitude to OECD Nuclear Energy Agency (NEA) and the Generation IV International Forum (GIF) for their invaluable contributions. We also wish to extend our special thanks to the organizations involved in the NHSI working group on Experiments and Code Validation and in the NEXSHARE Steering Committee for supporting the initiative with their participating members' leadership, guidance, and dedication. Their collective expertise and commitment have played a crucial role in the progress of this endeavor and in particular to the establishment of NEXSHARE.

The members of NEXSHARE Steering Committee are: Adorni, M. (NEA), Bae, H. (KAERI, Republic of Korea), Brunett, A. (ANL, USA), Grosjean, B. (CEA, France), Gimenez, E. (CNEA, Argentina), Hummel, D. (GIF), Iorizzo A. (European Commission), Kang, K.-H. (KAERI, Republic of Korea), Morreale, A. (CNL, Canada), Okano, Y. (JAEA, Japan), Qin S. (INL, USA) Ramsden, A. (Rolls Royse SMR, UK), Sabharwall, P. (INL, USA), Song, D. (CNNC/NPIC, China), Tarantino, M. (ENEA, Italy), Virdis, S. (TÜV NORD, Germany), Zhurbenko, E. (Rosatom, Russian Federation).

Join the Network!

NEXSHARE — What is the LMFNS database?

LMFNS Experimental Facilities Catalogue

IAEA.org NUCLEUS

Experimental Facilities in support of Development and Deployment of Liquid Metal cooled

Fast Neutron Systems

Includes an overview as well as detailed information on **153** experimental facilities under design, construction or operation

19 institutions from 14 IAEA Member States contributed

IAEA Catalogue of Facilities in Support of LMFNS LMFNS Facilities Database Overview of SFR Overview of LFR LMFNS Compendium Catalogue of Facilities in Support of Liquid Metal-cooled Fast Neutron Systems (LMFNS Catalogue) MYRRHABELLE facility -Belgium Nuclear Energy Series publication (in progress) "Experimental Facilities in Support of Liquid Metal Cooled Fast LMFNS Compendium. Summary of the IAEA publication To overview the potential capabilities of 150 experimental facilities in 14 IAEA Member States to support the development and deployment of the innovative Liquid Metal cooled Fast Neutron Systems (LMFNS) and navigate yourself through the LMFNS Facilities Database" click on the below buttons: Overview of SFR For detailed information on these facilities 1) click on the below button "LMFNS Facilities Database" (also on top of this page), 2) select the Coolant technology - SFR, LFR or both in the search box, 3) use other search and filtering tools as **LMFNS Facilities Database**

- A comprehensive Catalogue providing detailed information on experimental facilities currently designed, under construction or operating
- Facilities Designed to support the development and deployment of innovative liquid metal-cooled (sodium, lead and lead-bismuth) fast neutron systems (LMFNS), both critical and subcritical
- Identifies existing or future operational experimental facilities able to support innovative LMFNS
- Expected to facilitate cooperation using existing and planned experimental facilities for LMFNS, and enhance their utilization by providing endusers with detailed information
- Encourages international collaborations

Freely Available at iaea.org: Search for "IAEA LMFNS"

NEXSHARE – What is the LMFNS database?

IAEA NES Publication: Experimental Facilities in Support of Liquid Metal Cooled Fast Neutron Systems

- Inputs received from 14 countries and EU
- 153 facilities reviewed and accepted:
 - Na-based facilities: 79Pb-based facilities: 74
- NES document 50 pages overview and ~1000 pages on CD
 - published in 2018
 - online since 2016
 - main upgrade in 2019
 - last updated in 2024; +2 from UK:
 - Versatile Loop Facility (VLF)
 - Passive Heat Removal Facility (PHRF)

Freely Available at iaea.org: Search for "IAEA LMFNS"