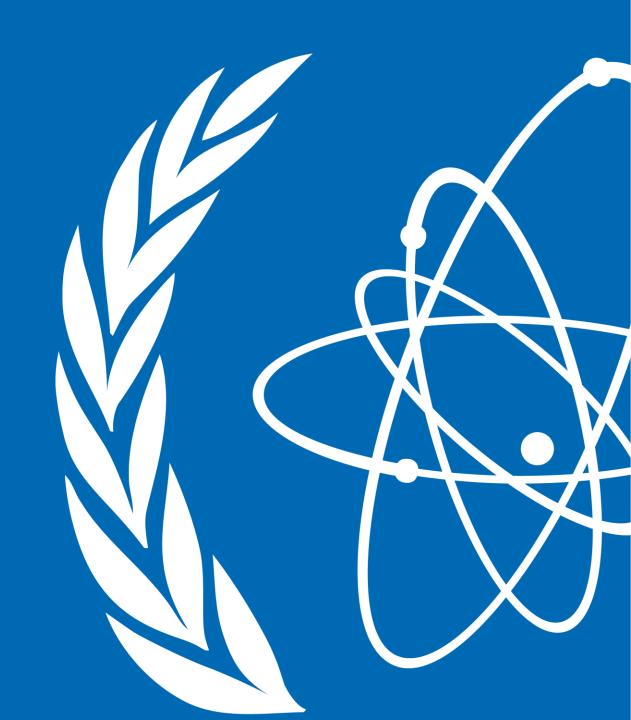
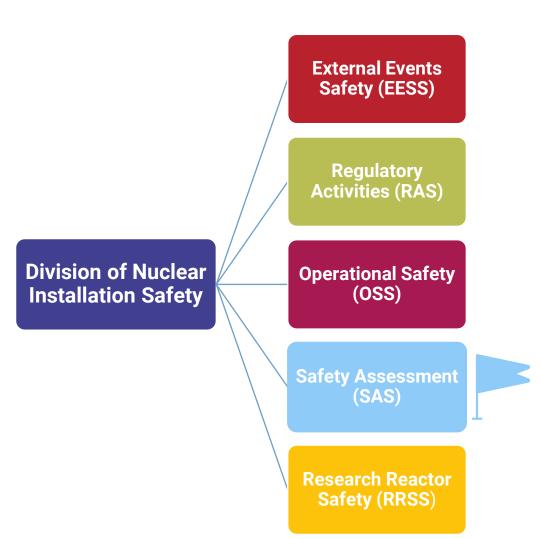
# Overview of IAEA Activities on the Safety of Fast Reactors

Technical Meeting on Advances and Innovations in Fast Reactor Design and Technology

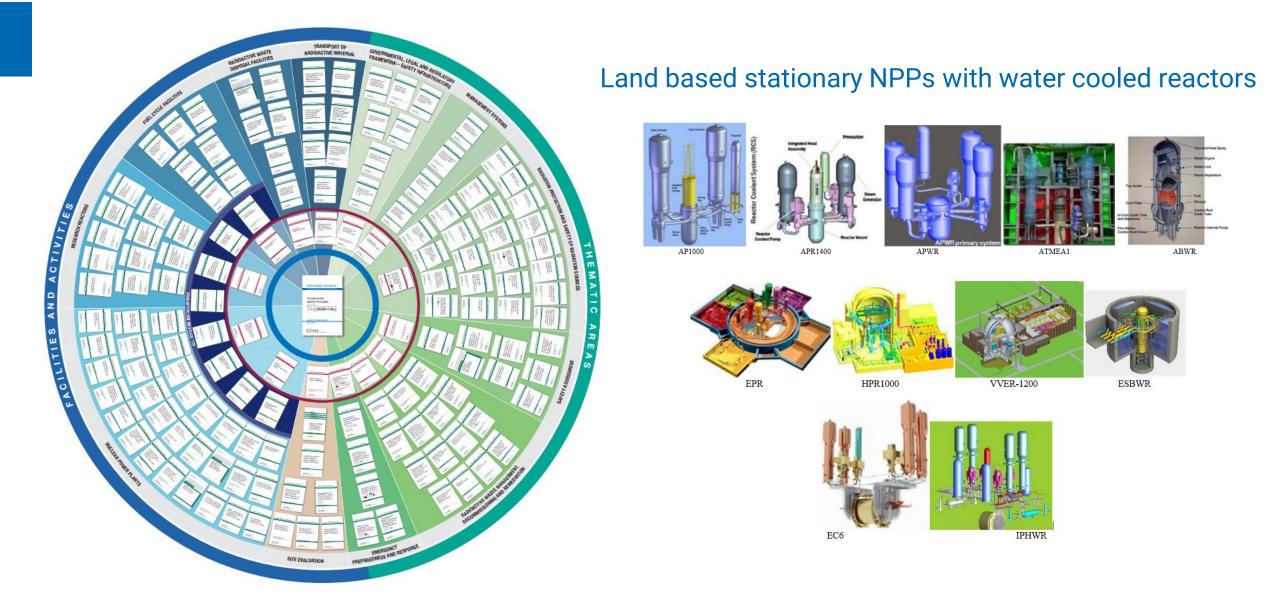

Vienna, 29 September - 3 October 2025

Vincenzo Tiberi

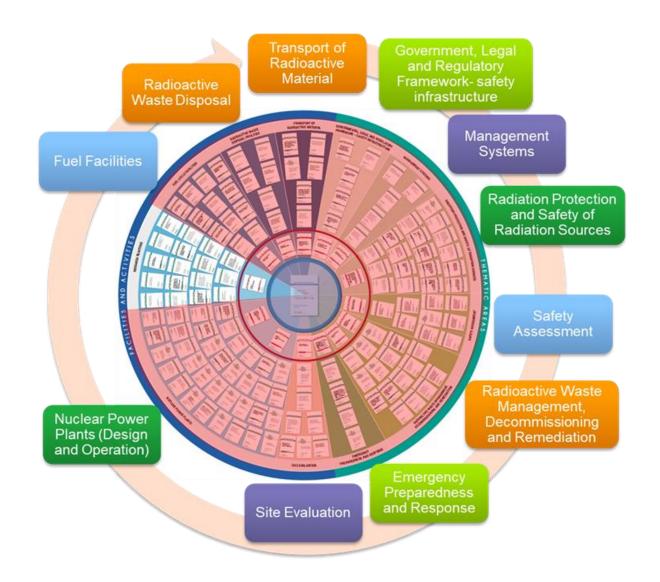

IAEA, Safety Assessment Section

Division of Nuclear Installation Safety

Department of Nuclear Safety and Security




## **DIVISION OF NUCLEAR INSTALLATION SAFETY (NSNI)**

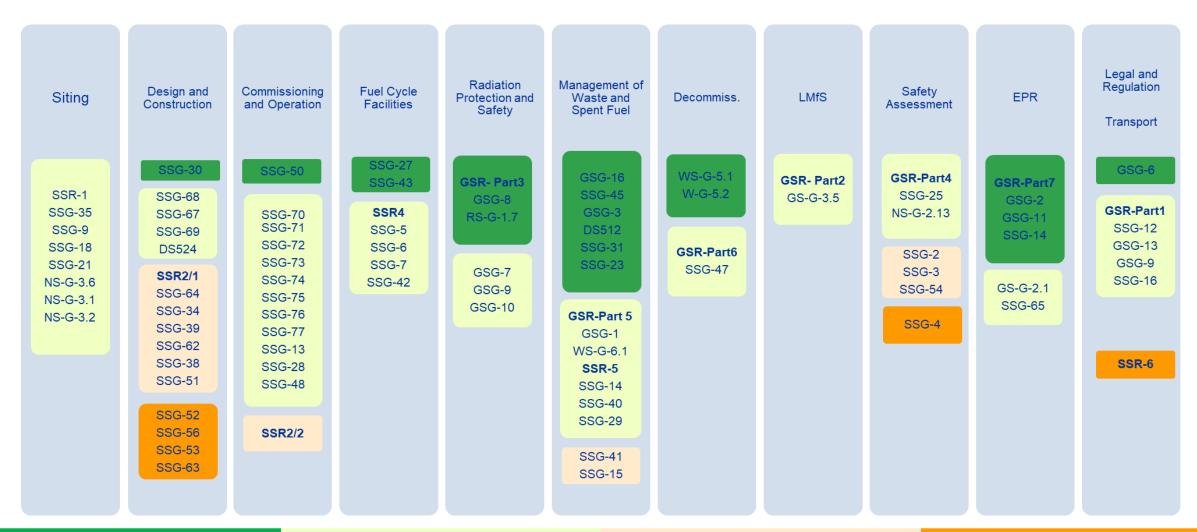



- Development of safety
   standards for nuclear installations
- Provision of safety reviews and advisory services to support the effective application of the safety standards
- Support to Member States in building and sustaining capability and capacity in nuclear safety

# **Safety Standards**



## Applicability of IAEA Safety Standards to NWCRs and SMRs




Are Safety
Standards
sufficient and
relevant to ensure
the safety of SMRs
and Non Water
Cooled Reactors?

Safety Reports Series No. 123

\_

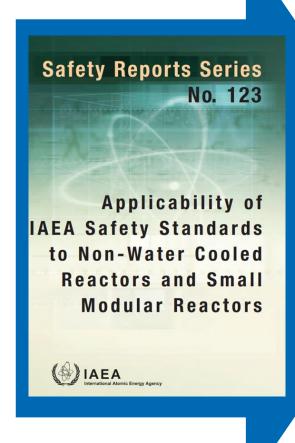
## **SUMMARY OF REVIEW OUTCOMES**



No applicability considerations (areas of non applicability, gaps, areas for further consideration)

Small number of applicability considerations/ very small impact on safety standard

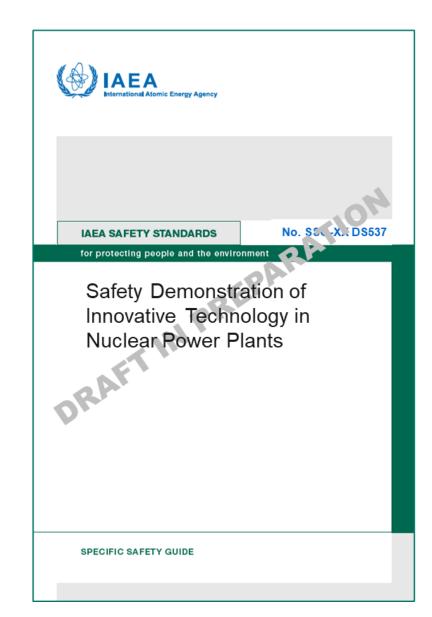
Some applicability considerations/ small impact on safety standard


Numerous applicability considerations/ more than a third of the safety standard impacted

#### Design Safety and Safety Assessment of Advanced NPPs: IAEA's 10 years vision

| Requirements and Safety guides              |      |    | 2025 |       |       |       | 2026 |    |    |    | 2027 |    |    |    | 2028 |       |    |    | 2029 |    |    | 2030  |      |       |    |       | 20 | 31    |    | 2032  |    |       |    | 2033  |    |    |    | 2034  |    |    |    | 2035 |    |    |        |
|---------------------------------------------|------|----|------|-------|-------|-------|------|----|----|----|------|----|----|----|------|-------|----|----|------|----|----|-------|------|-------|----|-------|----|-------|----|-------|----|-------|----|-------|----|----|----|-------|----|----|----|------|----|----|--------|
|                                             |      | Q1 | 02   | Q3    | Q4    | Q1    | Q2   | Q3 | Q4 | Q1 | Q2   | Q3 | Q4 | Q1 | Q2   | Q3    | Q4 | Q1 | Q2 ( | Q3 | Q4 | Q1    | Q2 ( | Q3 (  | Q4 | Q1 (  | Q2 | Q3    | Q4 | Q1    | Q2 | Q3    | Q4 | Q1    | Q2 | Q3 | Q4 | Q1    | Q2 | Q3 | Q4 | Q1   | Q2 | Q3 | Q4     |
| SSR-2/1 (Rev.1) Design requirements         | 2016 |    | 1    | 2     | 3     | 4     | 4    | 5  | 5  | 5  | 5    | 5  | 5  | 5  | 6    | 7     | 7  | 8  | 8    | 8  | 8  | 9, 10 | 11   | 12    | 12 | 13    | 14 |       |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-30 Safety Classification of SSCs        | 2014 |    |      |       |       |       | 1    | 2  | 3  | 4  | 4    | 5  | 5  | 5  | 5    | 5     | 6  | 7  | 7    | 8  | 8  | 9, 10 | 11   | 12    | 12 | 14    |    |       |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-34 Electrical systems                   | 2016 |    |      |       |       |       |      |    | 1  | 2  | 3    | 4  | 4  | 5  | 5    | 5     | 5  | 5  | 6    | 7  | 7  | 8     | 8    | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-38 Construction of NPPs                 | 2015 |    |      |       |       |       |      |    |    |    |      |    | 1  | 2  | 3    | 4     | 4  | 5  | 5    | 5  | 5  | 5     | 6    | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-39 Instrumentation and control          | 2016 |    |      |       |       |       |      |    | 1  | 2  | 3    | 4  | 4  | 5  | 5    | 5     | 5  | 5  | 5    | 5  | 6  | 7     | 7    | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-51 Human Factors Engelneering           | 2019 |    |      |       |       |       |      |    |    |    |      |    | 1  | 2  | 3    | 4     | 4  | 5  | 5    | 5  | 5  | 5     | 5    | 5     | 6  | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14    |    |    |    |       |    |    |    |      |    |    |        |
| SSG-52 Reactor core design                  | 2019 |    |      |       |       |       | 1    | 2  | 3  | 4  | 4    | 5  | 5  | 5  | 5    | 5     | 5  | 5  | 6    | 7  | 7  | 8     | 8    | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-53 Reactor containment                  | 2019 |    |      |       |       |       | 1    | 2  | 3  | 4  | 4    | 5  | 5  | 5  | 5    | 5     | 5  | 5  | 6    | 7  | 7  | 8     | 8    | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-56 Reactor coolant                      | 2020 |    |      |       |       |       | 1    | 2  | 3  | 4  | 4    | 5  | 5  | 5  | 5    | 5     | 5  | 5  | 6    | 7  | 7  | 8     | 8    | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-62 Auxiliary systems                    | 2020 |    |      |       |       |       |      |    |    |    |      |    |    |    | 1    | 2     | 3  | 4  | 4    | 5  | 5  | 5     | 5    | 5     | 5  | 5     | 6  | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14 |    |       |    |    |    |      |    |    |        |
| SSG-63 Fuel handling and storage            | 2020 |    |      |       |       |       |      |    |    |    | 1    | 2  | 3  | 4  | 4    | 5     | 5  | 5  | 5    | 5  | 5  | 5     | 6    | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-64 (Internal hazards                    | 2021 |    |      |       |       |       |      |    |    |    |      |    |    |    | 1    | 2     | 3  | 4  | 4    | 5  | 5  | 5     | 5    | 5     | 6  | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14    |    |    |    |       |    |    |    |      |    |    |        |
| SSG-69 Equipment qualification              | 2021 |    |      |       |       |       |      |    |    |    |      |    |    |    |      |       |    |    | 1    | 2  | 3  | 4     | 4    | 5     | 5  | 5     | 5  | 5     | 6  | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12 | 12 | 14    |    |    |    |      |    |    |        |
| SSG-88 Practical elimination                | 2024 |    |      |       |       |       |      |    |    |    |      |    |    |    |      |       |    |    |      |    |    |       | 1    | 2     | 3  | 4     | 4  | 5     | 5  | 5     | 5  | 5     | 6  | 7     | 7  | 8  | 8  | 9, 10 | 11 | 12 | 12 | 14   |    |    |        |
| SSG-90 Radiation protection                 | 2024 |    |      |       |       |       |      |    |    |    |      |    |    |    |      |       |    |    | 1    | 2  | 3  | 4     | 4    | 5     | 5  | 5     | 5  | 5     | 6  | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12 | 12 | 14    |    |    |    |      |    |    |        |
| SSG-61 Safety Analysis report               | 2021 |    |      |       |       |       |      |    |    |    |      |    |    |    |      |       |    |    | 1    | 2  | 3  | 4     | 4    | 5     | 5  | 5     | 5  | 5     | 6  | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12 | 12 | 14    |    |    |    |      |    |    |        |
| GSR Part 4 (Rev.1) Safety assessment        | 2016 |    |      |       |       |       | 1    | 2  | 3  | 4  | 4    | 5  | 5  | 5  | 5    | 5     | 6  | 7  | 7    | 8  | 8  | 9, 10 | 11   | 12    | 12 | 13    | 14 |       |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    | $\Box$ |
| SSG-2 (Rev.1) Deterministic safety analysis | 2019 |    |      |       |       |       |      |    |    |    |      |    | 1  | 2  | 3    | 4     | 4  | 5  | 5    | 5  | 5  | 5     | 6    | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-3 (Rev.1) Level 1 PSA                   | 2024 |    |      |       |       |       |      |    |    |    |      |    |    |    |      |       |    |    |      |    |    |       |      |       |    |       |    |       |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-4 (Rev.1) Level 2 PSA                   | 2025 | 12 | 12   | 14    |       |       |      |    |    |    |      |    |    |    |      |       |    |    |      |    |    |       |      |       |    |       |    |       |    |       |    |       | 1  | 2     | 3  | 4  | 4  | 5     | 5  | 5  | 5  | 5    | 6  | 7  | 7      |
| SSG-X (L3PSA) Level 3 PSA                   | New  | 2  | 3    | 4     | 4     | 5     | 5    | 5  | 5  | 5  | 6    | 7  | 7  | 8  | 8    | 9, 10 | 11 | 12 | 12   | 14 |    |       |      |       |    |       |    |       |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-X (DS537) Safety demonstration          | New  | 7  | 8    | 9, 10 | 9, 10 | 11    | 12   | 14 |    |    |      |    |    |    |      |       |    |    |      |    |    |       |      |       |    |       |    |       |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-25 (Rev.1) Periodic safety review       | 2013 | 7  | 7    | 8     | 9, 10 | 9, 10 | 11   | 11 | 12 | 12 | 14   |    |    |    |      |       |    |    |      |    |    |       |      |       |    |       |    |       |    |       |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSG-54 Accident management                  | 2019 |    |      |       |       |       |      |    |    |    |      |    | 1  | 2  | 3    | 4     | 4  | 5  | 5    | 5  | 5  | 5     | 6    | 7     | 7  | 8     | 8  | 9, 10 | 11 | 12    | 12 | 14    |    |       |    |    |    |       |    |    |    |      |    |    |        |
| SSR-XX (New safety requirements Fusion)     | New  |    |      |       |       |       |      |    | 1  | 2  | 3    | 4  | 4  | 5  | 5    | 5     | 5  | 5  | 5    | 5  | 6  | 7     | 7    | 8     | 8  | 9, 10 | 11 | 12    | 12 | 13    | 14 |       |    |       |    |    |    |       |    |    |    |      |    |    |        |
|                                             | _    |    |      |       |       | _     |      |    |    |    |      |    |    |    |      |       |    |    |      |    |    |       |      |       |    |       |    |       |    | _     |    |       |    |       |    |    |    |       |    |    |    |      |    |    |        |

4-7 March 2025, 25-27 June 2025 : 1<sup>st</sup> and 2<sup>nd</sup> Consultancy meetings on the revision of SSR 2/1


#### **OUR PROGRAMME OF WORK**



- New technical documents
- Compilation of inputs to future revision of relevant safety standards
- Enhancement of our training efforts
- Strengthen our Technical Safety Review services
- Plan our future work

Ensuring that we always respond to the needs of our Member States

#### **NEW SAFETY GUIDE IN DEVELOPMENT**



Why?

Because it's not enough to state that a reactor is safe....

... it has to be demonstrated!

# SAFETY OF ADVANCED TECHNOLOGIES

...and more

# CROSS CUTTING TOPICS

Design Safety & Safety

**Assessment** 



IAEA-Safety Report#####

Safety Assessment for Small Modular Reactors and Non-Water-Cooled Reactors

IAEA-TECDOC####

Progress in the Performance Assessment and Regulation of Passive Safety Features in Advanced Nuclear Power Plant Designs IAEA-Safety Report#####

Deterministic Safety Analysis for Operational States and Accident Conditions at Nuclear Power Plants (Rev. 1 of Safety Series Report No 23)

IAEA-TECDOC####

Demonstration on DID Implementation using Deterministic and Probabilistic Approaches

IAEA-TECDOC####

Consideration for Qualification of Advanced Manufacturing and Materials for Components Important to Safety in Small Modular Reactors and Non Water Cooled Reactors IAEA-TECDOC####

Safety Considerations in Non-Water-Cooled Reactor Core Design

IAEA-TECDOC####

Safety and Security
Implications of the use of
Artificial Intelligence in
Nuclear Power Plants

### SAFETY OF ADVANCED TECHNOLOGIES

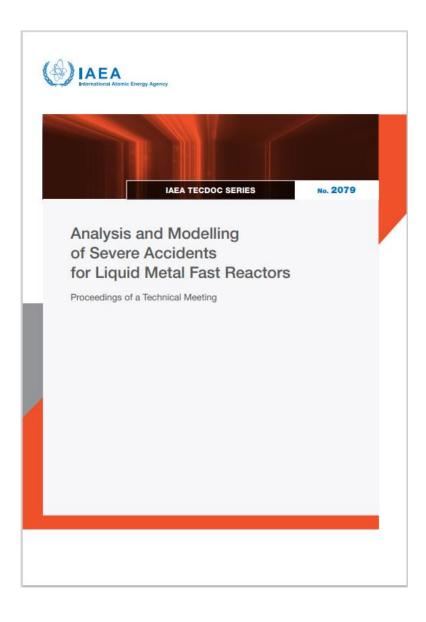
**TECHNOLOGIES** 





IAEA-TECDOC####

Considerations on the safety of Liquid Metal Cooled Fast Reactors


> Technical Report on Design Safety and Security Considerations of Floating Nuclear Power Plants

IAEA-TECDOC####

Considerations on the safety of Molten Salt Reactors

IAEA-TECDOC####

Considerations on the safety of High Temperature Gas Reactors



#### **Objectives**

This TECDOC aims to illustrate the status of knowledge of physical phenomena, development of models and numerical tools, and validation through experimental data, in relation to the progression of severe accidents in LMFRs.

For SFRs, the status of knowledge discussed at the technical meeting can be considered as being the state of the art in the field, considering that the attendees included a large majority of the key parties from design organizations, regulatory bodies, technical support organizations and R&D organizations, including both modellers of numerical codes and experimenters.

- The TECDOC encompasses severe accident sequences not 'practically eliminated' for LMFRs
  - Deterministic modelling and analysis of the severe accident progression
  - Numerical codes development and validation
  - Related experimental programmes for SFRs and, as applicable, LFRs

Mechanistic models for core degradation under severe accident conditions:

- fuel pin behaviour
- initiation/primary phase
- transition/secondary phase
- expansion phase
- material relocation
- long-term behaviour

- Radioactive material release and transport in-vessel and ex-vessel
- Conservative simplified/parametric fast-running models
- Code development and performance optimization, multi-physics approaches, platform architecture
- Experimental programmes, code validation, uncertainty analyses

Primary phase (initiating phase) **Expansion phase** Fuel damage process starting from the intact state of the core This phase ends with the failure of the fuel assembly duct Large mechanical energy release Long-term (post-accident) phase Secondary phase (transition phase) Core damage progression and relocation of the core materials after the fuel assembly hexagonal can failure

#### SFR

- Severe accident analysis and experimental validation for SFRs (9 papers, France, Germany, Japan, USA, Russia)
- Primary and transition phases of severe accidents for SFRs (4 papers, USA, Japan, India)
- Expansion phase and long-term behaviour for SFRs (4 papers, Japan, France)



LFR

 Accident analysis and experimental programmes for LFRs (6 papers, Romania, Russia, China, Italy, Egypt)

## SFR

#### - Conclusions

- Severe accident methodologies have been developed in MS
  - One of the objectives: evaluate the effectiveness of design measures implemented to cope with SA
  - It is essential to simulate all potential phenomena along with their corresponding interrelations
- One important aspect of severe accident analysis for SFRs: evaluate the mechanical energy releases
  which may damage the containment structures, including the features implemented to maintain subcriticality and to cool the core debris
- Progress in the development and improvement of simulation tools for severe accidents analysis to model additional phenomena and to account for mitigation systems in SFRs designs to achieve higher levels of confidence in safety assessments
- On-going experimental programmes support verification and validation of the physical and mathematical models

# SFR

#### - Conclusions

- Simulation tools for modelling the initiation/primary and transition/secondary phases developed and/or expanded to
  include modelling of the additional phenomena to reduce the number of conservative assumptions often made in
  severe accident analysis
- Simulation tools for the expansion phase and long-term behaviour have reached a **high level of complexity and** address the most important phenomena of interest (e.g. fluid structure interaction, FCI, fuel behaviour in degraded core and on core catcher)
- Complexity of phenomena -> high calculation time -> development of fast-running codes
- Efforts are also being devoted towards high-performance communication among these simulation tools
- A rich experimental matrix has been created. Additional experimental tests are needed to progress in the validation of physical correlations and of calculation tools for specific SFRs designs

#### SFR

#### - Perspectives

- Knowledge and simulation of phenomena likely to damage the reactor structure. R&D is now mainly moving into the later phases of accident
- Integral code system development is underway for the systematic analysis of various accident sequences
- Phenomenological knowledge, analytical models, and experimental data, R&D needs
  - **Primary and secondary phase**: e.g., molten fuel discharge through the steel duct, jet impingement, continued code development to model more phenomena and reduce conservatisms, ...
  - FCI: e.g., experimental programme to support the validation of FCI with large masses of corium
  - **Expansion phase**: expansion phase and fluid-structure interaction
  - Long term material relocation and cooling: debris bed behaviour, molten material behaviour and crust formation in the core catcher, coupling of thermo-hydraulic and neutronic models of the debris bed
  - FP release, transport, and retention under severe accident sequences (both for MOX and metal fuel)

LFR

- Conclusions and perspectives
- Lack of consensus on what accidental sequences leading to core degraded conditions are required to be mitigated. A guidance is needed Integral code system development is underway for the systematic analysis of various accident sequences
- The information provided on modelling of SA for LFRs is limited. A good start can be the development of simplified models. A joint effort by the entire LFR community is recommended
- More **information** was **provided** on the research facilities (phenomena that play an important role in the normal operation and in accident conditions no link with SA)

IAEA-TECDOC####

#### Considerations on the safety of Liquid Metal Cooled Fast Reactors

- Introduction
- 2. General Features of LMFRs
- Approaches for design and safety assessment for the prevention and mitigation of accidental sequences leading to severe accidents
- 4. LMFRs design features implemented to prevent and mitigate a severe accident
- 5. Conclusions

#### **Objective**

The objective of the publication is to present the safety approaches adopted by Member States in the design and safety assessment of LMFR, with an emphasis on accident sequences leading to severe accidents, while also highlighting specific design features of LMFR at preventing the occurrence, and mitigating the consequences, of such sequences.

The TECDOC presents practices by design organizations and licensee organizations in developing the safety demonstration related to the consideration of severe accidents, as well as practices by national regulatory bodies in reviewing the corresponding safety cases.

Target publication date: Q4 2025

#### **Definition of severe accidents for LMFRs**

- The IAEA safety glossary (2022 edition) defines a severe accident as an "accident more severe than a design basis accident and involving significant core degradation".
- Similarly to LWR approach, a core meltdown has been considered for previous SFRs and this is still
  the case for most of new SFRs designs. For LFRs and some of the new SFRs, the vendors claim
  that their design has inherent safety characteristics that allow to preclude a core meltdown. If this
  approach is accepted by the regulators, the severe accident sequences to consider as DEC-B will be
  discussed in the licensing process.
- It can be noted that the consideration of severe accidents is associated with a potential radiological release. Although the core is a major potential contributor to the radiological release, other potential contributors will also need to be considered (e.g., the spent fuel handling and storage systems or the polonium production in lead or LBE of LFRs).

#### **Prevention of severe accidents**

- Focus on DEC-A:
  - Combinations of frequent initiators with the failure of active shutdown systems
  - Combinations of frequent initiators with the failure of some DHR systems
- Regulators may request to assess as DEC-A additional accident conditions related to LMFR-specific risks, like local core faults.
- Identification of sequences that could develop into a severe accident (e.g., loss of forced flow through the core, local loss of flow in a fuel subassembly).
- **Orientations** guiding the design of prevention of severe accidents (passive features, redundancy, diversity...).

#### Mitigation of severe accidents

- Identification of sequences considered as a severe accident (DEC-B. e.g., ULOF)
- Severe accidents phenomena (e.g., potential mechanical energy release inside the reactor vessel, dispersion of core debris inside the primary circuit, risk of recriticality, ...)
- Orientations guiding the design for mitigation of severe accidents (e.g., core and fuel design characteristics, debris tray, containment)
- Safety demonstration supporting the robustness of mitigation features (deterministic and probabilistic safety analysis, sensitivity studies)

#### Rationale for 'practical elimination'

- Accident conditions leading to an important mechanical energy release that could jeopardize the
  capability of the containment to confine the radionuclides released during the sequence
- Accident conditions leading to the damage of reactor and containment structures due to the total loss of their cooling functions
- Accident conditions occurring with no confinement measures implemented to withstand the consequences of the severe accident (e.g., fuel handling procedures)
- For some designs: "practical elimination" of any accident condition leading to a whole core meltdown

# **Resources available to Member States**

# **OUR SERVICE: TECHNICAL SAFETY REVIEW (TSR)**

- Independent peer review of a reactor design safety assessment documentation
- Scope and level of detail tailored to the needs of the MS requesting it
- It may cover:
  - The entire safety analysis report (SAR)
  - Specific parts of the SAR, e.g., reactor, I&C, DSA, PSA, etc
  - Related safety areas, i.e., accident management programme, PSR, or national safety requirements



**TECHNICAL SAFETY REVIEW** 

# **TECHNICAL SAFETY REVIEW (TSR)**



Technical Safety Review (TSR) | IAEA



#### **SMR SAFETY ACADEMY**



Technologies addressed: Water-cooled SMRs, Sodium-cooled fast reactors (SFRs), Lead- and lead-bismuth cooled Fast Reactors (LFRs), High Temperature Gas Reactors (HTGRs), Molten Salt Reactors (MSRs)

# **IAEA-GIF Joint Workshop on the Safety of NWCRs**



INTERNATIONAL CONFERENCE

# Topical issues in nuclear installation safety

Learning from the past to accelerate the future

29 JUNE-3 JULY 2026 Vienna, Austria





# THANK YOU

v.tiberi@iaea.org