

Delivering science and technology to protect our nation and promote world stability

LEAD ISOTOPE EVALUATIONS

Current progress and limitations

Peter Brain

INDEN Structural Meeting 2024 Vienna, Austria // Hybrid

December 16-22, 2024 LA-UR-24-33187

Outline

- Motivation
- RRR
- Fast Region
- Integral Experiments
- Recommendations for Future Work

Majority of work presented here is encompassed in Thesis (available upon request):

P. Brain, "NEUTRON EVALUATION AND VALIDATION OF NATURAL LEAD ISOTOPES FOR FAST SPECTRUM SYSTEMS", Ph.D. Thesis, MANE, RPI, Troy, NY 2023. Electronic

Motivation

Lead is everywhere

- Work here was sponsored by DOE-NEUP for Lead Fast Reactors
- JAEA LANL collaboration for Accelerator Driven Systems
- Fusion considering Pb or PbLi in blanket
- Lead is used for shielding gamma in mixed source environments

4

Pre-validation / Pre-Evaluation

Summary of previous work

- ENDF/B-VIII.0 is a copy of JEFF-3.1
- Differential data exists throughout but the resolution of it varies greatly
 - Main differential data is ORELA (Horen, Harvey, Carlton) *Private Communication*
- No resonances below 3 keV except Pb-204
- Domingo-Pardo and Borella Pb-206/207 capture yields released post JEFF-3.1

Pre-validation / Pre-Evaluation

- Prediction of critical assemblies is all over the place, E/B-VIII.0 performing poorly in fast but best in thermal
- Missing intermediate spectra assemblies (this is common)

6

Pre-validation / Pre-Evaluation Quasi-Differential Scattering

 Natural Pb quasi-differential scattering measurements show that below 2 MeV there is significant structure that is poorly recreated

Resolved Resonance Region Evaluation

- Targeted Pb-206, Pb-207, Pb-208
- Adding capture and tweaking inelastic contribution for Pb-206/207
- Resolving an additional 500 keV of resonances for Pb-208 using novel methodology with Quasi-Diff Data and transmission
- Reconstructing the whole RRR with Blatt-Biedenharn

Impact of using BB compared to OMP

Resonance derived scattering distributions is more physically accurate from theory and experiments

Pb-207 RRR

Similar work for Pb-206

- Adopted JEFF-3.3 RRR parameters ($E_{lim} = 675$ keV) and adjusted them based on CoH-3 inelastic calculations
- Reworked bound s-wave resonance to be consistent with thermal scattering lengths and decay gammas

Pb-208 total cross section with new RRR

Fast Region Evaluation

Limited cross section data after 4 MeV

- Elastic, inelastic, 2n, and total of Pb-206 and Pb-207 are major channels
- CoH used for Hauser-Feshbach calculations with vibrational deformation and coupled-channels
- Good reproduction of averaged cross sections

Fast Region Evaluation

Pb-207 inelastic cross section can be accounted for

Summary of Evaluation

New cross sections and covariances

- 208Pb
 - Full RRR evaluation and RRR extension up to 1.5 MeV using SAMMY.
 - Adoption of Kawano evaluation for En ≥ 2.5 MeV, between 1.5 and 2.5 MeV total cross section interpolated again.
 - Full covariance below 20 MeV.
- 207Pb
 - Full RRR evaluation up to 0.675 MeV using SAMMY.
 - Full fast region evaluation up to 20 MeV using CoH-3. ESAD (MF=4, MT=2) taken from ENDF/B-VIII.0 from 0.7 to 2 MeV.
 - Full covariance below 20 MeV.
- 206Pb
 - Full RRR evaluation up to 0.900 MeV using SAMMY.
 - Full fast region evaluation up to 20 MeV in CoH-3. ESAD (MF=4, MT=2) taken from BROND-3.1 from 0.5 to 3.0 MeV.
 - Full covariance below 20 MeV.

Status of Lead Containing Integral Experiments

"Benchmark" does not mean "Trust Blindly"!

- The purpose of integral experiments changed overtime from <u>criticality</u> <u>limits</u> to <u>nuclear data validation</u> \rightarrow Evaluation methodology changed!
- These two are not equivalent and leads to trouble!

Benchmark	Page Count	Year	# Configs	# Pb Configs	Notes
PMF-35	21	1965	1	1	Extrapolation to k _{eff}
HMF-27	22	1962	1	1	Extrapolation to k _{eff}
HMF-57	37	1958	6	6	Extrapolation to k _{eff}
HMF-64	34	1991	3	3	Extrapolation to k _{eff}
MMF-06	100	1991	3	3	
PMI-04	60	1969	1	1	
LCT-10	67	1970-80	30	5	U(4.31)O ₂
LCT-17	82	1970-80	30	5	U(2.53)O ₂
LCT-27	101	1983	4	4	
LCT-74	444	2008	30	2	
MCT 13	85	1076	31	5	MOX/Plexiglass
IVIC 1-13	85	1970	51	5	fuel blocks
НСТ 38	01	1088	30	2	Cases 29/30
1151-30	21	1700	50	2	calculate poorly

HMF-57

Livermore Critical Mass Lab done in early 1960s

- 2 spheres and 4 cylinders with varying amounts of Pb reflection
 - Highest multiplications were <= 100
- The two cylinder cases which calculate way-off have more lead reflection
- ICSBEP write-up says that a trend can be observed with Keff vs. SA of U/Pb

Livermore Critical Mass Lab done in early 1960s

Figure D.1. A Comparison of Calculated keff as a Function of HEU/Lead Surface Area.

Recreating Figure D.1

• After inclusion of HMF-64, the relationship breaks down

New Figure D.1 with HMF-64 cases

Simulating Pb Benchmarks with Various Evaluations

ENDF/B-VIII.1 only has major change from changing elastic scattering

Simulating Pb Benchmarks with Various Evaluations

All International – No one performs good in thermal and fast

Future Work

New data is needed for Pb evaluation to make progress

 Areas for refining cross sections for fission and fusion applications are below

Resolution	Measurements	Sample	Energy
Differential	Transmission	^{206,208} Pb	1 - 4 MeV
	Capture Yield	^{206,207,208,nat} Pb	$E_n \ge 1 \text{ MeV}$
Quasi-Differential			
	High Energy Scattering	$^{206rad,208rad}\mathrm{Pb}^2$	0.5 - 20 MeV
	Mid Energy Scattering	²⁰⁶ <i>rad</i> ,208 <i>rad</i> , <i>nat</i> Pb	3 keV - 1 MeV
	Dulsad Laakaga Experiment ^{nat} Dh		DT or D-D
	i uiseu Leakage Experiment	10	14 MeV / 2.2 MeV
Integral Critical			
	Fast reflected ²³⁵ U/ ²³⁹ Pu	^{nat} Pb	0.1 - 5 MeV
	Thermal reflected LEU	^{nat} Pb	$E_n \le 5 \text{ MeV}$
	Sub-critical Measurements with BeRP [167]	^{nat} Pb	0.1 - 5 MeV

Example of New Integral Experiments

Thales with Pb

Remaking HMF-57

• Δ Keff from E/B-8.0 \rightarrow 8.1 = 750 pcm • Δ Keff from E/B-8.0 \rightarrow 8.1 = 400 pcm

Where are We Going?

Structural materials need to escape fission interactions

- Leverage secondary integral responses in addition to keff
 - Subcritical Noise, Leakage, Activation Foils
- Thick sample differential measurements
- Quasi-differential scattering/emission
- Leakage from Cf-252, D-D, or D-T shielded sources

Where are We Going?

Structural materials need to escape fission interactions

- Leverage secondary integral responses in addition to keff
 - Subcritical Noise, Leakage, Activation Foils
- Thick sample differential measurements
- Quasi-differential scattering/emission
- Leakage from Cf-252, D-D, or D-T shielded sources

PERIODIC TABLE WORTH OF CAMPAIGNS ARE NEEDED

Delivering science and technology to protect our nation and promote world stability

ESAD Automation Method

ESAD AUTOMATION

HST-38

WINCO Tank experiment from 1980s

- Two cases containing Pb, one calculates fine while other is 4000pcm off
- Upon further inspection the last two cases in the experiment campaign calculate uncharacteristically high
- Looked into similar configurations of material and logbooks to see what is the cause

Code	KENO	MCNP	COG ^(a)
(Cross Section Set) \rightarrow	(44-Group	(Continuous Energy	(Continuous Energy
Case Number↓	ENDF/B-V)	ENDF/B-V)	ENDF/B-VI.7)
Case 1	1.0009 ± 0.0004	1.0010 ± 0.0004	1.0018 ± 0.0006
Case 2	0.9998 ± 0.0004	0.9999 ± 0.0004	0.9960 ± 0.0006
Case 3	1.0015 ± 0.0004	1.0019 ± 0.0004	0.9999 ± 0.0006
Case 4	1.0014 ± 0.0004	1.0022 ± 0.0004	1.0020 ± 0.0006
Case 5	1.0015 ± 0.0004	1.0022 ± 0.0004	1.0016 ± 0.0006
Case 6	1.0006 ± 0.0004	0.9999 ± 0.0004	1.0016 ± 0.0006
Case 7	1.0024 ± 0.0004	1.0019 ± 0.0004	1.0021 ± 0.0006
Case 8	1.0023 ± 0.0004	1.0023 ± 0.0004	1.0003 ± 0.0006
Case 9	1.0020 ± 0.0004	1.0010 ± 0.0004	1.0001 ± 0.0006
Case 10	1.0016 ± 0.0004	1.0015 ± 0.0004	1.0016 ± 0.0006
Case 11	1.0019 ± 0.0004	1.0026 ± 0.0004	1.0034 ± 0.0006
Case 12	1.0013 ± 0.0004	1.0020 ± 0.0004	1.0018 ± 0.0006
Case 13	1.0069 ± 0.0004	1.0077 ± 0.0004	1.0071 ± 0.0006
Case 14	1.0067 ± 0.0004	1.0070 ± 0.0004	1.0087 ± 0.0006
Case 15	1.0063 ± 0.0004	1.0072 ± 0.0004	1.0075 ± 0.0006
Case 16	1.0046 ± 0.0004	1.0066 ± 0.0004	1.0070 ± 0.0007
Case 17	1.0019 ± 0.0004	1.0022 ± 0.0004	1.0021 ± 0.0006
Case 18	1.0012 ± 0.0004	1.0028 ± 0.0004	1.0020 ± 0.0006
Case 19	1.0020 ± 0.0004	1.0032 ± 0.0004	1.0035 ± 0.0006
Case 20	1.0039 ± 0.0004	1.0039 ± 0.0004	1.0041 ± 0.0006
Case 21	1.0001 ± 0.0004	1.0016 ± 0.0004	0.9986 ± 0.0006
Case 22	0.9994 ± 0.0004	1.0018 ± 0.0004	0.9981 ± 0.0006
Case 23	1.0007 ± 0.0004	1.0013 ± 0.0004	0.9991 ± 0.0006
Case 24	1.0026 ± 0.0004	1.0032 ± 0.0004	1.0037 ± 0.0006
Case 25	1.0029 ± 0.0004	1.0032 ± 0.0004	1.0027 ± 0.0006
Case 26	1.0026 ± 0.0004	1.0030 ± 0.0004	1.0038 ± 0.0006
Case 27	1.0021 ± 0.0004	1.0030 ± 0.0004	0.9970 ± 0.0006
Case 28	1.0001 ± 0.0004	1.0017 ± 0.0004	1.0038 ± 0.0006
Case 29 ^(b)	1.0476 ± 0.0004	1.0481 ± 0.0004	1.0477 ± 0.0006
Case 30 ^(b)	1.0127 ± 0.0004	1.0094 ± 0.0004	1.0175 ± 0.0006

Table 45. Sample Calculation Results (United States).

(a) Results provided by Dave Heinrichs of Lawrence Livermore National Laboratory.(b) Anomalous results

Case	Absorber-refle	Senaration gan	
	Tank #1 (Top Tank)	Tank #2 (Bottom Tank)	(cm) ^(a)
1	-	-	9.37768
2	-	POLY-2	1.55702
3	POLY-2	-	16.4719
4	SS	-	10.7823
5	-	SS	9.26592
6	SS	POLY-2	3.08102
7	POLY-2	BP-2	12.23772
8	POLY-2	BP-6	5.84454
9	POLY-2	BP-2 and BP-6	0.38608
10	POLY-2	BP-7	7.78256
11	BP-7	-	11.05408
12	BP-2	-	11.22934
13	-	1 Boraflex	5.50926
14	-	2 Boraflex's	3.87604
15	-	3 Boraflex's	2.6797
16	-	4 Boraflex's	1.6129
17	POLY-3	BP-7	2.84988
18	-	BP-2	4.61518
19	HRS	BP-2	5.9309
20	SS	BP-2	6.1214
21	-	POLY-3, HRS and POLY-1	5.22224
22	-	POLY-6, HRS, and POLY-1	3.24866
23	-	POLY-6, SS, and POLY-1	3.01244
24	-	Pyrex	3.48742
25	Lead	BP-2	5.08254
26	Beryllium	BP-2	6.42366
27	DU	BP-2	5.40766
28	-	Cadmium and POLY-1	5.68096
29	-	Lead and POLY-1	4.96316
30	-	POLY-6, DU and POLY-1	3.2258

Table 32. Critical Configurations.

Without Poly and Interstitial material, the WINCO tanks are supercritical at any separation less than 9.4 cm

Somehow the 1/8" of Pb is beating 1/16" of Cd for thermal neutron absorber. Case 30 is an additional 0.7" of poly and 1/8" of DU.

• Look into cases 1,

21, 28, 29, 30

(a) This is the distance between the bottom of Tank #1 and the top of any plates stacked on Tank #2. If no plates are on top of Tank #2, then the separation gap is the distance between the two tanks.

Incident neutron data / ENDF/B-VIII.0 / / MT=102 : (z,y) / Cross section

Poly Definitions Wrong?

Logbooks report changing descriptions

- Logbook and configuration table in ICSBEP entry are different and show different thicknesses
- Further review revealed that between '86 and '88 the polyethylene was relabeled but no information exists between which naming is which

Plate ID		Diameter (in.)	Thickness (in.)	
POLY-1		27.704 ± 0.001	0.512 ± 0.001	
POLY-2		27.004 ± 0.007	1.854 ± 0.002	
POLY-3		27.696 ± 0.001 0.511 ± 0.001		
POLY-6		27.010 ± 0.001 0.776 ± 0.011		
BP-2		28.230 ± 0.001	0.482 ± 0.003	
BP-6		28.232 ± 0.001	1.011 ± 0.004	
BP-7		28.243 ± 0.001	0.478 ± 0.005	
Boraflex		27.668 ± 0.067	57 0.082 ± 0.001	
Pyrex		29.073 ± 0.003	1.113 ± 0.001	
SS		29.997 ± 0.001	0.251 ± 0.001	
HRS		27.730 ± 0.001	0.234 ± 0.001	
Lead		28.634 ± 0.002	0.125 ± 0.002	
Beryllium	l	Fourteen 2.865 Plates (se	$2.865 \times 16.008 \times 0.255$ -inch ites (see Figure 7) ^(a)	
Depleted Uranium		2 Rectangular Depleted-Uranium Plates (see Figure 8) ^(a)		
Cadmium ^(b)	CD-1	28.62 ± 0.02	0.0687 ± 0.001	
Cauinum	CD-2	28.60 ± 0.02	0.0681 ± 0.001	

Table 5. Dimensions of the Absorber-Reflector Plates.

				and a little state of
Polyethelene				
POLV-1	0.2558 +/0019	2.573	28.661	0.000
POLY-2	0.5132 +/0013	4.930	28.504	0.000
POLY-3	0.5128 +/0010	4.973	28.610	0.000
POLY-4	0.9980 +/0014	9.637	28.524	0.000
POLY-5	1.0238 +/0048	9.957	28.602	0.000
POLY-6	2.0493 +/0060	19.226	28.602	0.000
POLY-7	2.0103 +/0081	19.093	28.591	0.000
Borated				
Polvethelene				
P-1 (5 wt % B)	0.4725 +/0029	4.539	28.472	0.000
P-2 (5 wt % B)	0.4840 +/0071	4.770	28.504	0.000
P-3 (5 wt % B)	0.4853 +/0096	4.712	28.563	0.000
P-4 (5 wt.% B)	0.4890 +/0115	4.729	28.543	0.000
3P-5 (5 wt.% B)	1.0303 +/0207	9.556	28.496	0.000
3P-6 (5 wt.% B)	1.0193 +/0093	10.268	28.614	0.000
	0 4808 +/- 0024	6.092	28.465	0.000
3P-7 (32 wt.% B)	0.4000 +/0024			

(a) obtained from lab notebook

(b) two half disks (see Figure 9)

Updating polyethylene description

Adding more poly to increase capture

- Adding 1.3 inches of polyethylene to stack which could be a combination of several poly slabs
- Result is a reduction in keff from 1.040 to 0.996 (-4400 pcm change)

