

INDEN Cu and Fe Benchmark tests

20241216 Saerom Kwon

National Institutes for Quantum Science and Technology (QST)

CM of INDEN 16-20th of December 2024 @IAEA HQ

Contents

- Introduction
- Methodology
- JAEA/FNS Cu experiment
- JAEA/FNS Fe experiment
- QST/TIARA Fe experiment

remarks about INDEN Cu data

• Summary

Contents

- Introduction
- Methodology
- JAEA/FNS Cu experiment
- JAEA/FNS Fe experiment
- QST/TIARA Fe experiment
- Summary

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 3/24

Introduction

- We performed INDEN benchmark tests using JAEA/FNS Cu and Fe experiments and QST/TIARA Fe experiments.
 - Cu & Fe: JAEA/FNS experiments for DT neutrons
 Fe: QST/TIARA experiments for 40 and 65 MeV neutrons
- We report all results and some remarks for further INDEN improvement.

Methodology

- Code: MCNP-6.20
- Nuclear data library: INDEN (Nov.2024), FENDL-3.2b and JENDL-5

Iron (Fe)		FENDL-3.2b	(INDEN-1.0)	recommended, INDEN (Nov.2024) in this study	
54Fe		f54e80o		f54e80p	
56Fe		f56e80X29r48		f56e80X29r67d	
57Fe		f57e80m		f57e80o	
58Fe		ENDF/B-VIII.0		-	
	Copper (Cu)	FENDL-3.2b	recommended, INDEN (Nov.2024)		latest (no ACE)
	63Cu	ENDF/B-VII.0	cu63e81b2_PopWe2TotIn6RB		cu63e81b2_PopWe2TotIn7
	65Cu	ENDF/B-VII.0	cu65e81b2_PopWe2TotIn6RB		cu65e81b2_PopWe2TotIn7

- Nuclear data processing code: NJOY2016.76
- Files downloaded from the official webpage <u>https://www-nds.iaea.org/INDEN/</u>.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 5/24

Contents

- Introduction
- Methodology
- JAEA/FNS Cu experiment
- JAEA/FNS Fe experiment
- QST/TIARA Fe experiment
- Summary

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 6/24

Basic information

- The newly performed experiment by using Cu assembly covered with Li₂O blocks (ref) has been conducted in this study.
- Fission (MFC) and several reaction rates (activation foils) were measured every 5 cm inside Cu assembly.

Details of the new experiment: [ref] S. Kwon et al., FED109/111, p.1658 (2016).

Reaction rates used for this study

- ⁹³Nb(n,2n)^{92m}Nb
- ²⁷Al(n,α)²⁴Na
- ¹¹⁵In(n,n')^{115m}In
- ¹⁹⁷Au(n,γ)¹⁹⁸Au
- ¹⁸⁶W(n,γ)¹⁸⁷W

Results on the reaction rates sensitive to higher energy neutrons (threshold reaction)

- FENDL-3.2b and INDEN show a good agreement with the measured ones.
- JENDL-5 underestimates the measured ⁹³Nb(n,2n)^{92m}Nb reaction rate slightly.

- All libraries underestimate the measured data more with depth of Cu assembly.
- INDEN is worse than FENDL-3.2b.

Calc./Expt. of reaction rates (cont.)

FENDL-3.2b

JENDL-5

INDEN (Nov.2024)

10⁰

101

Expt. (EXFOR)

Cross sections of (n, γ) reaction

Cu63 (mt=102)

10³

10²

10¹

10⁰

10-1

10⁻²

10-3

10⁻⁴

10⁻⁵

10-4

section [b]

Cross

JENDL-5 has modified the neutron capture reaction data, mt=102 based on the recent experiment data (via 25 keV measured by M.Weigand 2017).

10⁻²

Energy [MeV]

10-1

10-3

 This is the reason of the improvement [ref].

Underestimation tendency still appears:

- ¹⁹⁷Au(n,γ)¹⁹⁸Au and ¹⁸⁶W(n,γ)¹⁸⁷W reaction rates are sensitive to lower energy neutrons.
- All libraries underestimate drastically, though JENDL-5 is better.

[ref] C. Konno et al., J. Nucl. Sci. Technol. 60 (9), 1046–1069 (2023)

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 9/24

- INDEN Cu data showed the better agreement with the measured ⁹³Nb(n,2n)^{92m}Nb reaction rate sensitive to neutrons above 10 MeV than FENDL-3.2b, but it underestimated the measured reaction rate of ¹¹⁵In(n,n')^{115m}In more than FENDL-3.2b.
- The issue on lower energy neutrons should be improved [ref].
- The neutron capture reaction, (n,γ), in ⁶³Cu data of JENDL-5 has been re-evaluated based on the recent experimental data, but the improvement is around 10%.

About the issue on lower energy neutrons; [ref] S. Kwon et al., FED109/111, p.1658 (2016).

Contents

- Introduction
- Methodology
- JAEA/FNS Cu experiment
- JAEA/FNS Fe experiment
- QST/TIARA Fe experiment
- Summary

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 11/24

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 12/24

JAEA/FNS Fe experiment

Basic information

- Experiment performed only for Fe assembly [ref] is conducted in this study.
- Several reaction rates (activation foils) measured were not used in this study.
- Neutron spectra by scintillators, proton recoil counters and slowing down time method to cover wide range of neutron energies were used in this study.

all plots of	
Calc./Expt. provided	
by these energy bins	

0	over 10 MeV
0	0.1 – 1 MeV
0	10 – 100 keV
0	1–10 keV
\cap	0.1–1 keV

 $10 - 100 \, eV$

(unit: mm)

Details of the experiment: [ref] F. Maekawa et al., JAERI-Data/Code 98-021 (1998).

Result of neutron spectra

- Swallower depth:
- INDEN is better than FENDL-3.2b, though both overestimate the measured neutron under 10 keV.

• **Deeper depth:** Mostly FENDL-3.2b and INDEN show a good agreement with the measured data.

Results of Neutron flux (Calc./Expt.)

- JENDL-5 is the best for any energy region.
- The INDEN recommended version (Nov.2024) is better than FENDL-3.2b (INDEN-1.0)

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 14/24

Reasons of underestimation above 10 MeV

- INDEN (Nov.2024) and FENDL-3.2b have the same (n,2n), (n,np)... data in ⁵⁶Fe sensitive to higher energy neutrons.
- We compare the reaction data between FENDL-3.2b and JENDL-5.

- JENDL-5 shows the better agreement with the measured ones.
- The inelastic scattering and (n,np) reaction data of ⁵⁶Fe cause the difference between INDEN and JENDL-5.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 15/24

Reactions to make differences on neutron flux below 10 keV

The result of 1 keV <En < 10 keV shows the similar tendency.

• We confirm clear different tendency on neutron flux below 10 keV between FENDL-3.2b and INDEN.

- The calculated neutron flux using FENDL-3.2b overestimates the measured one than that using INDEN (Nov.2024) data.
- The reason of the difference is coming from ⁵⁷Fe data, inelastic scattering data with residual in discrete excited level in particular.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 16/24

Reactions to make differences on neutron flux below 10 keV (cont.)

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests

17/24

Contents

- Introduction
- Methodology
- JAEA/FNS Cu experiment
- JAEA/FNS Fe experiment
- QST/TIARA Fe experiment
- Summary

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 18/24

19/24 CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests

Details of the experiments: [Ref] H. Nakashima et al., JAERI-Data/Code 96-005 (1996).

QST/TIARA Fe experiment

Basic information

- Experiments of Fe assembly performed by high energy neutrons over 20 MeV [ref] were conducted in this study.
- Neutron spectra measured by scintillators
 - 40 MeV neutrons: Fe test shield assemblies of 10, 20, 40, 70 and 100 cm in thickness
 - 65 MeV neutrons: Fe test shield assemblies of 20, 40, 70, 100 and 130 cm in thickness
- To show the differences intuitively, we provide Calc./Expt. plots for two energy regions
 - Continuous regions: sum up from 10 to 35 (or 60) MeV Ο neutron fluxes
 - Peak regions: sum up from 35 (or 60) to 45 (or 70) MeV neutron fluxes

<Note>

TIARA concrete shielding experiments can be useful for O data validation study

40 MeV neutron

Neutron spectra

- No difference is confirmed between FENDL-3.2b and INDEN.
- Both show a good agreement with the measured data in whole energy region.
- JENDL-5 shows the better agreement with the measured data in whole energy region.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 20/24

65 MeV neutron

- No difference is confirmed between FENDL-3.2b and INDEN.
- Both underestimate the measured data by around 50% in continuous region and by around 20% in peak region.
- JENDL-5 underestimates the measured data by around 30% in continuous region and by around 30% in peak region.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 21/24

Reason of the underestimation (65 MeV neutrons) GQST

(1) Which iron isotope data cause underestimation?

 \rightarrow Replacing iron isotope data one by one shows that ⁵⁶Fe causes the underestimation.

(2) Which reaction data in ⁵⁶Fe cause underestimation?
 → Replacing non-elastic (mt=5 or equiv.) scattering data shows the effect.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 22/24

INDEN Fe data

- underestimated the measured neutron fluxes above 10 MeV.
- Some reaction data should be re-evaluated in ⁵⁶Fe;
 - Inelastic scattering data
 - (n,2n) reaction data
 - (n,np) reaction data
 - Non-elastic scattering data
- Neutron fluxes below 10 keV calculated using INDEN Fe showed better agreement with measured ones than those using FENDL-3.2b due to the discrete excited level of inelastic scattering data in ⁵⁷Fe.

Summary

- We performed INDEN benchmark tests using FNS Cu and Fe experiments and TIARA Fe experiments for further INDEN improvement.
- Remarks on INDEN Cu and Fe data as follow:

Copper (Cu) – FNS/Cu exp.

- For neutrons above 10 MeV, the reaction rates
 calculated using INDEN showed the good agreement with the measured ones.
- INDEN underestimated the measured reaction rate
 of ¹¹⁵In(n,n')^{115m}In more than FENDL-3.2b.
- For lower energy neutrons, the reaction rates
 calculated using INDEN underestimated the measured ones like those using other nuclear data
 libraries.

Iron (Fe) – FNS/Fe and TIARA/Fe exp.

- For neutrons above 10 MeV, the neutron fluxes calculated using INDEN underestimated the measured ones.
- The underestimation tendency was drastically large with higher energy neutrons, 65 MeV.
- Inelastic scattering, (n,2n), (n,np) reactions, nonelastic scattering data in ⁵⁶Fe should be re-checked.
- Inelastic scattering data in ⁵⁷Fe of INDEN is better than that of FENDL-3.2b.
- Mostly the current recommended version files of INDEN are better than those of FENDL-3.2b. But JENDL-5 is the best for Fe data.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests 24/24

Acknowledgement and...

I gratefully acknowledge Dr. Konno of JAEA for his invaluable guidance and support through out this study.

Also thank you for your attention.

QST in Rokkasho, Aomori, Japan

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests

INDEN vs JENDL-5 (Fe) in details

As shown in P.17, we confirmed that ⁵⁶Fe data made the different tendency between INDEN and JENDL-5. But, replacing ⁵⁶Fe data only does not show the same result as JENDL-5.

1.4

1.2

1.0

0.8

0.6

Calc. / Expt.

- Each effect of ⁵⁴Fe, ⁵⁷Fe and ⁵⁸Fe data is very minor because of their natural abundance are not so high (<10%).
- However, the summed effect of ⁵⁴Fe, ⁵⁷Fe and ⁵⁸Fe data is conspicuous.

CM of INDEN on the Evaluated Data of Structural Materials (16-20 Dec 2024 @IAEA HQ) | INDEN Cu and Fe Benchmark tests