Rez contribution to inden: New copper broomstick and Teflon leakage experiments

Michal Kostal INDEN 2024

Vienna, December 18th 2024

Research infrastructure used by CVR group in experiments

- 4 research reactors LR-0, LVR-15, VR-1 (university, CTU Prague), AKR-2 (TU Dresden)
- ²⁵²Cf neutron sources
 - Material blocks for neutron leakage measurements:
 - spheres (Fe, Ni ... and others)
 - cubes (CF₂, Al, stainless steel, Cu, graphite ...)
 - Spherical tank with aqueous solutions for prompt gamma leakage measurements
 - NaCl, $MnSO_4$, $FeSO_4$, , planned $CO(NH_2)_2$ (ad blue) , and many others
- DT generators
- Well-described AmBe
- XRF analyzers
- (and many others)

Neutron spectrometry

- Well-characterized spectrometer
- Validation in PTB
- Validation in ²⁵²Cf
- Verified in Si filtered spectrum

Gamma spectrometry - HPGe

- Most important is detector sensitivity
- Irradiated pins measurement
 - Mathematical model allows arbitrary axial power density profile
- Foil measurement
 - Mathematical model allows even large samples on detector cap
 - Determination of coincidence summing correction
- Gamma flux measurement
 - Model allows evaluation of gamma flux (only the

UJV Group PEOPLE I INNOVATION I TECHNOLOGY

Czakoj et al., Rad. Phys. and Chem. 202 (2023) 110542

Broomstick experiment

- Integral quantities can usually be measured much more accurately than differential nuclear data,
 - Useful to use for tuning nuclear data evaluations to improve integral performance.
- Our experiment measurement of spectra behind various thickness broomstick material
- The measured spectra are compared with calculation
- The experiment was realized in VR-1 reactor

Kostal et al., Broomstick experiment with copper in VR-1 reactor, Annals of Nuclear Energy, Vol. 211, 2025, p. 110993

VR-1 reactor

- VR-1 university research reactor operated by CTU Prague
- Characterized neutron spectrum in radial channel
- Source spectrum known (large set of SACS measurements realized)

Kostal et al., Characterization of mixed N/G beam of the VR-1 reactor, Annals of Nuclear Energy, 122, (2018), pp. 69-78 Kostal et al., Validation of IRDFF-II library in VR-1 reactor field using thin targets, Annals of Nuclear Energy, 158, (2021), p. 108268

Development of pinhole beam

- Special insertion in VR-1 channel to collimate beam to diameter of 3 cm
- Large Pb block to suppress the gamma background
- Shutter to allow closing the beam without reactor shutdown

Kostal et al., Broomstick experiment with copper in VR-1 reactor, Annals of Nuclear Energy, Vol. 211, 2025, p. 110993

Spectra measurement

······ Open beam + cones

······ 5cm Cu + cones

······ 10cm Cu + cones

······ 15cm Cu + cones

······ 20cm Cu + cones

800

-Open beam

—15cm Cu —20cm Cu

9

— 5cm Cu — 10cm Cu 1000

Background determination

Beam characterization

The spectrum in beam is similar to spectrum in chanel in previous measurement

- Spectra in output and measuring position are identical
 - Flux decrease (factor 2.612) implies that beam is relatively not divergent
- The beam is sharp (1% when moved by 35 mm corresponds to scatter from probe).

Misalignment [mm]	Rel. flux
0 (In axis)	1.000
5	0.965
10	0.963
15	0.905
20	0.533
25	0.265
30	0.044
35	0.011

Comparison with various evaluations

• Low uncertainty experiment (beam transmission)

15cm Cu

-20cm Cu

— 1s unc.

- Simple geometry
- Good source description
- Discrepancies from simulation (if any) are on account of cross section evaluation
 - JEFF-3.3 highly discrepant

-5cm Cu 🛛 ——10cm Cu 🗧

• ENDF/B-VIII.1 GOOD

20%

JENDL-5 problematic

Leakage from copper cube

Copper cube evaluated

Support for benchmarks - 2 m above the lab.floor (as usually)

Leakage spectrum (1 - 10 MeV) 100 cm from center

Reaction rates of : ¹⁹⁷Au(n,g)¹⁹⁸Au ⁵⁸Ni(n,p)⁵⁸Co ⁹³Nb(n,2n)^{92m}Nb ⁵⁵Mn(n,g)⁵⁶Mn Background spectrum (room effect)

Cone 20cm Fe – 32cm PE

Comparison of broomstick and leakage

 Obtained results are in good consistence with previously measured neutron leakage from copper block

Sensitivities

 Broomstick is excellent accompanying experiment in cross section validation because sensitivities are different from case of leakage from material block

New neutron leakage experiments

PTFE block $60 \times 50 \times 50$ cm

CVŘ Research Centre Řež Perchloretylene D=50cm

Aluminium block $55 \times 50 \times 50$ cm

Cones = 32cm PE + 20cm Fe

²⁵²Cf in well defined cladding

Support for benchmarks - 2 m above the lab.floor (as usually)

Al leakage spectra

			115ln(n,n')					58Ni	i(n,p)	
	Plate position	Al thickness [cm]	ENDF/B- VIII.0 [%]	JEFF-3.3 [%]	JENDL-5 [%]	Unc. [%]	ENDF/B- VIII.0 [%]	JEFF-3.3 [%]	JENDL-5 [%]	Unc. [%]
	6	1.18	-2	-2	-2.3	3.9	-9.4	-9.4	-9.6	12.2
	7	6.12	-8.7	-8.7	-7.1	2.5	-7.2	-7.2	-6.5	4.3
	8	11.06	-12.2	-12.2	-8.2	2.5	-8.7	-8.4	-6.6	2.9
Centre Řež	9	16.01	-12.6	-12.6	-6.2	2.8	-11.9	-11.5	-10	2.6
I	10	20.95	-18.3	-18.3	-10.2	2.8	-8	-8	-2.7	2.4
	11	25.91	-16.9	-16.9	-6.8	3.5				

1.4

Stilbene measurement of PTFE leakage flux

- Neutron leakage spectra in 1 m
- Stilbene detector 10x10 mm
- Not high gamma background (good PSD discrimination)

Room effect evaluation

Vertical view

C/E comparison of measured spectra

• Best agreement in case of INDEN (ENDF/B-VIII.1.) however still some discrepancies are notable in region below 2 MeV

Foil results

- Independent monitors of neutron flux
- Even high flux monitored 5g Au foil, 2 month activation, 5d measurement => NPA ~ 1200 cts

Indium ¹¹⁵In(n,n')

Placement on plate No. back side	C ₂ F ₄ thickness [cm]	ENDF/B -VIII.0	INDEN	JEFF- 3.3	JENDL- 5	u _r [%]
6	1.40	4.4	2.0	4.4	2.2	3.9
7	6.82	-4.8	-4.8	-4.8	-7.5	3.0
8	12.28	-5.2	-1.8	-5.3	-7.5	3.1
9	17.68	-14.4	-8.1	-14.5	-15.9	4.4
10	23.09	-24.6	-16.3	-24.6	-25.0	7.5
11	28.48	-26.7	-14.7	-26.8	-25.1	5.5

Nickel ⁵⁸Ni(n,p)

Placement on plate No. back side	C₂F₄ thickness [cm]	ENDF/B -VIII.0	INDEN	JEFF- 3.3	JENDL- 5	u _r [%]
6	1.40	3.1	2.1	3.1	1.8	9.0
7	6.82	-2.0	-1.7	-2.1	-3.3	3.4
8	12.28	-5.6	-2.9	-5.6	-5.7	2.9
9	17.68	-7.8	-3.0	-7.8	-6.6	3.3
10	23.09	-12.3	-5.5	-12.3	-9.6	3.2
11	28.48	-9.8	0.5	-9.8	-4.0	3.5

Gold ¹⁹⁷Au(n,2n)

Placement on plate No. back side	C ₂ F ₄ thickness [cm]	ENDF/B -VIII.0	INDEN	JEFF- 3.3	JENDL- 5	u _r [%]
10	23.09	-3.8	-2.6	-4.4	17.0	17.8

AKR-2 experiment

X

- detector position

AKR-2 spectra

- Large beam diameter ~ D=12 cm in this experiment
- Due to geometry (holding table) + beam diameter ... notable background ..
- In this large beam diameter also elastic/inelastic play role . . . (but not so high as in leakage experiments)

21

C/E of measured spectra

- Above 2 MeV good agreement below discrepancies similarly as in californium experiment
- Most likely issue in ¹⁹F total cross section below 2 MeV

New experiments in Reference Neutron Benchmark Field

- Permanent reproducible neutron field
- Well defined spatial distribution of the neutron field
- Well defined neutron energy spectrum
- Characterized gamma spectrum

Centre Řež

IRDFF-II: A New Neutron Metrology Library

C. Ref	erence Neutron Fields from Detailed		
Cor	mputational Models	54	
1.	SPR-III Fast Burst Reactor Central		
	Cavity	54	
2.	ACRR Pool-type Reactor Central		
	Cavity	55	
3.	ACRR Pool-type Reactor Pb-B ₄ C		
	(LB44) Bucket	57	
4.	ACRR Pool-type Reactor		
	Cd-Polyethylene Bucket	57	
5.	ACRR Pool-type Reactor		
	Polyethylene-lead-graphite (PLG)		
	Bucket	57	
6.	ACRR Fueled Ring External Cavity		
	(FREC-II)	58	
7.	Mol-BR1 Cavity ²³⁵ U Fission		
	Croctman	58	
	Spectrum	00	
8.	LR-0 Reactor at Řež	59	
8. 9.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube	59	
8. 9.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel	59 60	
8. 9. 10.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF	59 60 62	
8. 9. 10. 11.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma	59 60 62 63	
8. 9. 10. 11. 12.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a	59 60 62 63	
8. 9. 10. 11. 12.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source	59 59 60 62 63 63	
8. 9. 10. 11. 12. 13.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the	59 60 62 63 63	
8. 9. 10. 11. 12. 13.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the ICSBEP Handbook	59 60 62 63 63 64	
8. 9. 10. 11. 12. 13. 14.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the ICSBEP Handbook Flattop-25 Neutron Field from the	59 60 62 63 63 64	
8. 9. 10. 11. 12. 13. 14.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the ICSBEP Handbook Flattop-25 Neutron Field from the ICSBEP Handbook	59 60 62 63 63 64 64	
8. 9. 10. 11. 12. 13. 14. 15.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the ICSBEP Handbook Flattop-25 Neutron Field from the ICSBEP Handbook Big-Ten Neutron Field from the	59 60 62 63 63 64 64	
8. 9. 10. 11. 12. 13. 14. 15.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the ICSBEP Handbook Flattop-25 Neutron Field from the ICSBEP Handbook Big-Ten Neutron Field from the ICSBEP Handbook	59 60 62 63 63 64 64 64 65	
8. 9. 10. 11. 12. 13. 14. 15. 16.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the ICSBEP Handbook Flattop-25 Neutron Field from the ICSBEP Handbook Big-Ten Neutron Field from the ICSBEP Handbook CFRMF	59 60 62 63 63 64 64 64 65 65	
8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	LR-0 Reactor at Řež TRIGA-JSI Pneumatic Tube Irradiation Channel ISNF Sigma–Sigma FNS–graphite Neutron Field with a D-T Source Godiva Neutron Field from the ICSBEP Handbook Flattop-25 Neutron Field from the ICSBEP Handbook Big-Ten Neutron Field from the ICSBEP Handbook Big-Ten Neutron Field from the ICSBEP Handbook	59 60 62 63 63 64 64 64 65 65	Group

Validation of chlorine cross sections

- Some molten salt reactor (MSR) concepts propose using molten chlorides
- New experiments realized in LR-0 special core in Rez
 - C₂Cl₄ (C is very well known => discrepancies are on account of CI)
 - Keff
 - Power density profile

REF – reference LR-0 core without C_2Cl_4 , C1 – case only with C_2Cl_4 , C2 – case with C_2Cl_4 and 54 fuel pins, C3 – case with C_2Cl_4 and 114 fuel pins

Criticallity results C2Cl4

- Critical parameter determined for selected arrangements depending on Cl content
 - Driven by water
 - Systematic uncertainties ~200pcm
- Large discrepancies in arrangements with chlorine
 - Significant underprediction

• Difference from reference case, core with ENDF/B-VIII.0

Librory	Difference from reference case				
LIDI di y	C1	C2	C3		
ENDF/B-VIII.0	-162	-168	-174		
ENDF/B-VII.1	-166	-163	-175		
JEFF-3.3.	-162	-170	-184		
JENDL-5.	-38	-63	-90		

Modification	H _{cr} [mm]	Unc.	dp/dH [pcm/cm]	Unc.	Library		k _{eff} [-] ± 0	.00004	
Reference	538.75	0.81	285.67	11.64	Libidiy	REF case	C1	C2	C3
core					ENDF/B-VII.1	0.99990	0.99825	0.99826	0.99816
Case 1	727.24	0.11	125.96	0.82	ENDF/B-VIII.0	0.99953	0.99791	0.99785	0.99779
Case 2	709.84	0.08	130.03	0.68	JEFF-3.3.	1.00174	0.99957	0.99959	0.99961
Case 3	692.95	0.09	146.15	2.40	JENDL-5.	1.00152	1.00067	1.00042	1.00023

Power density profile

- Simulations are predicting significant effect on power profile
- The decrease is really observed
 - Systematic uncertainties ~200 pcm
- Large discrepancies in arrangements with chlorine
 - Significant underprediction

• •••

26

LE LINNOVATION | TECHNOLOGY

Sensitivity analysis

• This experiment is highly sensitive for ${}^{35}Cl(n,\gamma)$ in low energy, ${}^{35}Cl(n,p)$ in high energy

Construction materials in reactivity experiments

- The effect of inserted block is studied
- In past was tested steel (iron + 1.5% Mn)
- New experiment with copper block

 - Copper in center 611.42 +/- 0.12 mm

63Cu(n,g)

- Planned measurements with B₄C (¹⁰B) filters (JSI collaboration), spring 2025
- In 2023 preliminary experiment with natural boron capsule (nearly equivalent to JSI one) ~ 2.364 g/cm³ instead of JSI 2.36 g/cm³

	Poured	Sintered
Density [g/cm ³]	1.197	2.36
Thickness [mm]	7.9	4
55Mn(n,g) [s-1]	3.67E-29	3.75E-29

Table 5

Summary of C	C/E-1 for	63Cu(n,g)6	⁴ Cu reaction in	different	neutron fields.
--------------	-----------	------------	-----------------------------	-----------	-----------------

⁶³ Cu(n,	ENDF/B-	JEFF-	JENDL-	IRDFF-	Uncertainty
g) ⁶⁴ Cu	VIII.0	3.3	5	II	
Void	20.2%	23.4%	20.9%	20.2%	4.5%
Cd filter	17.7%	28.1%	19.4%	17.8%	3.8%
B4C filter	13.4%	26.4%	24.0%	13.9%	3.6%
²⁵² Cf(s.f)	-2.4%	-2.0%	-1.7%	-3.6%	3.4%

Schulc et al., Appl. Rad. and Isot. 215, (2025), 111586

Kostal et al., Appl. Rad. and Isot. 169 (2021) 109566

29

New benchmarking of reference core

During characterization of heterogenous critical assembly, in ch-1 of ICSBEP benchmark, the evaluators define material, geometrical, ... etc parameters. In case of fuel cladding use of producer certificate is welcomed. But is it reliable ??

Producer certificate

Zr 98.97 %

• Nb 1 %

• Hf < 0.03 %

El	m/m%	StdErr
Zr	96.84	0.47
Nb	1.63	0.08
Мо	0.80	0.17
Si	0.62	0.26
CI	0.11	0.026

Mass spectrometry

	mean	unc
Hf	0.04	0.0032
Nb	1.10	0.088
Zr	97.70	7.816

NAA analysis

Hf	449 ppm	50ppm
Та	2 ppm	0.2ppm
К	18 ppm	1ppm
Nb	1.25%	0.18%

Zr case

XRF analysis

Conclusions

Broomstick experiment realized at the VR-1 and it seems excellent tool for total cross section testing

There is a strong potential of AKR-2 for broomstick – discussion about use of C_2Cl_4 in future experiments is planned

The Cf benchmark experiment for Teflon and Aluminium will be submitted to ICSBEP

The new experiments realized in LR-0 reference field. The new benchmarking is ongoing ...

Thank you for attention

Michal Kostal Michal.Kostal@cvrez.cz

Acknowledgements

The results were obtained using the CICRR infrastructure, financially supported by the Ministry of Education, Youth and Sports - project LM2023041 and by the European Union under grant agreement No 101061142.

XRF detail

