

Development of Joining Technologies for the Cooling Plate and Breeder Unit in HCCP Breeding Blanket Fabrication

Hyoseong GWON¹, Yi-Hyun PARK¹, Mu-Young AHN¹

¹KOREA INSTITUTE OF FUSION ENERGY, Korea

Corresponding author e-mail address: hsgwon@kfe.re.kr

Introduction

- ◆ ITER decided to reduce the number of ports dedicated to TBM testing from three to two, and resulted in the reduction of TBM concepts from six to four
- ♦ KO negotiated with EU for a joint development of Helium-Cooled Ceramic Pebble TBM, and formed Partnership Arrangement between KO/EU signed March 2023
- ♦ TBM-set consisting of TBM box, process pipes, TBM shield including attachment
- ◆ F4E responsible for TBM box except of Breeder Unit (BU), Procurement of EUROFER97, ITER KOREA responsible for TBM shield including attachment, TBM-set integration, Procurement of SS316L(N)-IG (F4E/ITER KOREA: 50%/50%)

[HCCP TBM-set global views]

[Work package sharing for the TBM-set manufacturing]

Fabrication of the Cooling Plate

- ◆ The Breeder Unit (BU) is a key component of the TBM for neutron multiplication and tritium breeding and Cooling Plate (CP) needed to remove the nuclear heating generated from the neutron reactions
- > A total length of the CP over 800 mm (not feasible with conventional machining)
- > Small/rectangular shaped cooling channels (requiring high-precision machining)
- ♦ Investigating fabrication method using combination of conventional machining and diffusion bonding to replace the special EDM developed for fabricating the CP

[Cooling Plate fabrication method using diffusion bonding]

- ◆ The fabrication method for the cooling plate using the combination including diffusion bonding
- Machining a cooling plate body including channels and a cooling plate cover
- ➤ The Cooling Plate Body and Cover joined by diffusion bonding using a hot press
- Bending the cooling plate after the diffusion bonding
- ➤ Inspection through visual inspection and Non-Destructive Testing

[Hot Press diffusion bonding]

Optimization of the post heat treatment conditions for EUROFER97

- ➤ Performing diffusion bonding by stacking six specimens (250 x140 x 21 mm) based on the diffusion bonding condition (1150°C, 12.5MPa, 3hr)
- The HP-bonded specimen cut into 20 mm-thick sections, which were used to evaluate mechanical properties and analyze microstructures
- > Test specimens per 1 test block: tensile, impact, microstructure specimens

Summary

- ♦ A novel fabrication technology for Cooling Plates using diffusion bonding is under development as an alternative to the previously applied Special EDM process.
- ◆ Post-heat treatment conditions for EUROFER97 are being investigated to optimize the microstructure and to achieve mechanical properties equivalent to or exceeding those of the base material.
- ◆ For the Breeder Unit, welding groups have been defined to develop welding procedure specifications. The feasibility of laser welding was examined for each joint through bead-on-plate tests.
- ◆ Even under identical laser power and speed, bead shape and penetration depth varied, confirming that welding motion and shielding method are critical factors for Breeder Unit welding.
- ◆The applicability of the wobble function was assessed using AARA plates, demonstrating that its implementation improves weld quality and mitigates defects

Fabrication of the Breeder Unit

- The BU composed of various components requiring many different WPSs
- Small and thin weld joints (requiring high-precision machining and welding)
- ♦ Investigation of the assembly sequence and welding groups of the BU
- > A total of eight welding groups defined in order to develop the pWPS

[Breeder Unit]

[Assembly Sequence of the Breeder Unit]

- ◆ Defining details like joint types, specimen sizes for each welding group (WPS 4.1 4.8)
- Three different systems used to investigate the feasibility and process parameters of la ser beam welding

WPS Development Specification				
9.	Details of WPS	Joint type (PQR)	Joint size (mm)	Component Size
Ļ	Purge gas pipe + Perforated sheet	Pipe + Plate	t1 , ø10	Plate : t1 x 152 x 19.8 Pipe : t2.5 x ø12 x 63
2	BU distributor + Perforated sheet BU distributor + Purge gas pipe	Plate + Plate Pipe + Plate	t1 , 19.8x152 t10 , ø12	Plate: t20 x162.4 x 24.5 Pipe: t2.5 x ø12 x 63
}	CP hor + CP vert	Plate + Plate	t2.5 , 383x131 61xR29.5 61xR40.5	Plate: t2.5 x 383x131 Cooling Plate Hor : t5 x U 383 x 167.5
ļ	Helium pipe + BU cooling manifold	Pipe + Pipe	t2.5 , ø12.5x57.5	Tube : t2.5, ø12.5x57.5
5	BU distributor + CP (hor & vert)	Plate + Plate	t2 , 162.4x24.8	Plate: t20 x 162.4 x 24.8
;	BU cooling manifold + CP (hor & vert)	Plate + Plate	t2 , 164.9x32.4 t2 , ø12	Plate: t18.5 x 164.9 x 32.4
,	BU cooling manifold + Purge gas pipe	Pipe + Plate	t2, ø12	Plate: t18.5 x 164.9 x 32.4 Pipe: t2.5 x ø12 x 63
	BU cooling manifold +BU back plate	Plate + Plate	t3 , 164.9x32.4	Plate: t18.5 x 164.9 x 32.4 Plate: t10 x 185 x 181

- ◆Bead On Plate (BOP) test carried out with power of 2 ~ 4 kW, Speed of 1 ~ 3 m/min, using ARAA plate
- ◆ Bead shape and depth varied depending on equipment and shielding gas supply, even under the same laser power and speed, welding motion and shielding method to be critical factors

[X-sectional analysis on the BOP tests]

[Results of the wobble tests with two LBW systems]

- Considering applying the wobble function to improve the weld quality by compensating for the gap deviation and removing pores inside the weld bead
- ◆No defects such as pores or cracks near the welds and HAZ in both laser systems
- The applicability of Wobble to RAFM steel (ARAA) confirmed although optimization still needed