
A tailored Machine Learning (ML) pipeline has been designed to learn complex relationships within the hybrid
database and propose optimal experimental conditions. This tool streamlines the discovery process and minimizes
resource-intensive experimentation.
1. Smart Preprocessing: ensures data quality and prepares it for model training. Key steps include cleaning low-
informative data, outlier detection, intelligent missing data imputation with ML and dimensionality reduction.
2. Adaptive Proxy Modeling: we develop highly accurate ML models to predict target variables (e.g. α, D) from
experimental parameters. It implements hyperparameter tuning for smart imputation and proxy model, it features
also a comprehensive performance evaluation and agnostic evaluation by Predictive Power Score (PPS).
3. Intelligent Optimization & Experimental Design

• Custom Figure of Merit (FoM): tailored target function to allow quantitative comparison and optimization across
multiple target values, reflecting real-world experimental objectives.

• Acquisition Function: it combines the model's predictions, predictive uncertainty and a learned empirical error,
estimated by training an ML model dedicated to leave-one-out errors.

• Iterative optimization algorithms: the acquisition function is incorporated into genetic optimization algorithms
to explore the experimental domain and identify new points by balancing the pursuit of target values with the
need to reduce domain uncertainty.
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A first approach to the development of formulations for lithium
isotope enrichment for Fusion by liquid extraction with complexing
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This project establishes a comprehensive, data-driven framework for optimizing Lithium-6 isotope enrichment via liquid-liquid
extraction.
Integrated ML Framework: We developed and trained a customizable ML model, leveraging both literature and experimental data, for
predicting and optimizing extraction efficiency. This framework includes a user-friendly interface for data analysis, model
management, and result visualization.
Intelligent Experimentation: The model effectively suggests trial parameters and predicts key performance indicators (enrichment
factors α, extraction efficiency D, custom FoM). While currently showing an approximate 30% error, this provides actionable guidance
for R&D and indicates areas for future model refinement through new data.
Global interpretation: via explainability techniques, we revealed critical information about the influence of the parameters considered.
We validated consistency with physical phenomenology, identifying key dependencies that align with experimental findings.
Path Forward: the current prototype highlights the fundamental role of the quality and quantity of data contained in the database.
Continuous expansion of the database, particularly in areas characterized by experimental heterogeneity, is essential to improve
predictive accuracy and fully exploit the potential of the ML model to optimize the development of formulations for lithium-6
enrichment through liquid-liquid extraction.

Hybrid Database: A Foundation for Data-Driven Extraction 
Process Development

……

Introduction

Our approach integrates diverse information into a hybrid database, comprising literature , experimental
and material data.

• Systematic Data Extraction: we built a dedicated extraction database by extracting and standardizing
data from relevant literature. This involved defining a robust data model and implementing a rigorous
preprocessing pipeline to unify disparate units and boundary conditions, and manage sparse, categorical
data through custom imputation.
• Chemical Property Integration: to enhance data effectiveness, we created a parallel database of
chemical substances (salts, complexants, solvents and co-solvents) and their relevant physicochemical
properties. This innovative step allows us to replace categorical chemical names with quantifiable
features.
• Dynamic Data Enrichment & Dimensionality Reduction: The hybrid database is fed to a dimensionality
reduction pipelines (e.g., PCA) to manage the increased complexity and prepare the data for effective
machine learning analysis.

This hybrid database structure provides a robust, standardized, and information-rich foundation,
enabling the application of advanced machine learning techniques for extraction process optimization.

Optimal Experimental Design with AI

Shapley explainability

We leverage Shapley values to provide transparent and actionable insights into our proxy models. Rooted in cooperative game theory, offer a robust and theoretically
sound method for attributing the contribution of each input feature to the model's predictions.
Global Feature Impact: quantifies the average influence of each input feature on model predictions, highlighting key variables.
Directional Influence: indicates whether a feature tends to increase or decrease the predicted target.
Scientific Validation: helps verify model consistency with physical phenomena and uncover novel dependencies.
This interpretability layer transforms our predictive models into more transparent tools, fostering deeper scientific understanding and accelerating decision-making in
Lithium-6 extraction development.

Eni's research is committed to developing fusion energy production as part of its energy transition initiatives.
The basis of the technology is the fusion reaction between two hydrogen nuclei, deuterium and tritium:
D + T 𝐻𝑒ଶ

ସ + n + 17,6 MeV
Tritium is a ß radiator and only exists in nature in negligible quantities. Tritium must therefore be produced in
situ. The most suitable material for producing tritium is lithium. Lithium exists in nature in the form of two
isotopes: 7Li with an abundance of 92.5% and 6Li with an abundance of 7.5%. Both can produce tritium by
neutron bombardment according to the reactions:

𝐿𝑖ଷ
଺ + 𝑛଴

ଵ  𝑇ଵ
ଷ + 𝐻𝑒ଶ

ସ + 4,8 MeV
𝐿𝑖ଷ

଻ + 𝑛଴
ଵ  𝑇ଵ

ଷ + 𝐻𝑒ଶ
ସ + n’ – 2,466 MeV

The reaction of 6Li is exothermic and contributes significantly to the energetic output of the fusion reactor, 
whereas the reaction of 7Li is endothermic and results in a loss of energy. Moreover, the cross section of the 6Li 
is much larger than that of the 7Li, especially for thermal neutrons. For the energy balance to be favorable, the 
ratio of tritium production to consumption must be sufficiently greater than 1 (Tritium Breeding Rate TBR>1). 
To achieve this with an energy balance suitable for sustaining the plasma and the fusion reaction, the lithium 
must be enriched in a 6-mass component.
The level of enrichment depends on the reactor design and in particular the blanket-concept and is estimated 
at between 30% and 90%.

HCPB (Helium Cooled Pebble Bed)

•Li4SiO4 or Li2TiO3
•6Li enrichment: 40-60%

HCLL (Helium Cooled Lithium Lead)
• eutectic LiPb
• 6Li enrichment: >90%

Liquid Immersion Blanket
Molten Salt (FLiBe)
6Li enrichment: tbd

1. Chemical exchange methods: 
• lithium amalgam system
• liquid ammonia system  
• cation complexing systems using mainly cyclic polyethers and 

cryptands (liq-liq extraction)
• intercalation systems
• organic or inorganic ion exchangers (displacement chromatography

methods)
• lon-Exchange Resins lon-exchange
• Resin-Supported Complexing Agents 
• lon-Exchange Membrane

2. Electrochemical exchange methods
• electrolyses on mercury or other cathodes
• electromigration 
• electrophoreses
• diffusion and electromigration

3. Laser methods LIS
• Atomic Vapour LIS
• MLIS – Molecular LIS  

4. Thermal Diffusion
5. Distillation
6. Fractional Cristallization
7. Radiofrequency Spectroscopy
8. Microalgal Enrichment Process
9. Centrifuge exctraction
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Main technologies for isotopic enrichment of 6Li

…and combinations of these technologies

Cation complexing systems – liquid –liquid extraction

The formulation involves combining many parameters that must generate systems that are easily
miscible, with optimal solubility for the complexing agent and rapid chemical exchange.

Enrichment factor
α = (6Li/7Li)OP / (6Li/7Li)AP

Distribution factor
D = [Li]OP/[Li]AP
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