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From the viewpoint of fuel control and tritium safety in a DT fusion
reactor, it is important to correctly understand the tritium mass transfer
in the blanket system.

Introduction

Fuel cycle system with Water Cooled Ceramic Breeding blanket

1. T release behavior from Li 
ceramic breeder

2. T permeation to primary 
cooling water

3. T permeation from primary 
to secondary cooling water

4. Evaluation model for T 
balance in a DEMO reactor 

Contents 
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Out-pile experiment

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8
Li

4
SiO

4
 (Fzk)  0.2 g

Experiment at KURRI

Temperature

 

 

T
ri

ti
um

 c
on

ce
nt

ra
ti

on
 [

 k
B

q/
cc

 ]

Time [hour]

(1.65×1013cm-2s-1 for 3 min)

0

200

400

600

800

1000

T
em

pe
ra

tu
re

 [
 o C

 ]

Wet gas

1000PaH2O/N2

H2 gas

1000PaH2/N2

Dry gas
Dry N2

KUR or JRR3

Sample (QST)
(Packed in quartz tube)

(1) Tritium release from solid breeders

7cm

I.C.1
I.C.2

Bubbler

Cold Trap

Purge Gas

Sample BedCuO

H2/N2 Gas JRR-4, KUR

Kyushu
University

Ionization chambers
HTO + HTHT

Influence of surface reaction



3 Technical Meeting on Tritium Breeding Blankets

Li2TiO3 pebbles 
supplied from QST.

The trapped tritium was released by dry or wet 
gas purge and monitored by Ionization chamber.

T.Kawagoe et al., J.Nucl.Mater.,297(2001)27

T trapping 
capacity 

Isotope 
exchange 
rate.

Physically 
adsorption 
capacity

Isotope 
exchange 
capacity.

Response curve from 
IC.

Surface reaction of tritium on breeder surface

Tritium gas

Dry N2

H2O
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Mass balance equation of tritiated water in the gas stream

Mass balance equation of tritiated water on the breeder surface

Mass balance equations in the sample bed were 
numerically calculated and the reaction rate was 
obtained by the fitting method.

Adsorption

Diffusion

Isotope exchange
reaction 2

Desorption of
Adsorbed water

Evaluation of isotope exchange reactionrate

Evaluation of isotope exchange reaction rate
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T transfer processes and key reactions in 
overall T release property to a purge gas He 
containing H2.

1. T generation in a crystal grain.
2. T diffusion in the crystal grain.
3. Interaction of diffusing T with irradiation defects

formed in the crystal grain.
4. T transfer from inside to surface of the crystal grain.
5. Absorption of T into the crystal grain.
6. Adsorption/desorption of HTO and H2O on crystal grain surface.
7. Isotope exchange reaction between H2 in gas phase and T on the crystal grain 

surface (isotope exchange reaction 1).
8. Isotope exchange reaction between H2O in the gas phase and T on the crystal 

grain surface (isotope exchange reaction 2). 
9. Water formation reaction on the crystal grain surface with H2 in the gas phase.
10.Mass transfer of hydrogen isotopes and water vapor through the interconnected 

pores to geometrical surfaces of the pebbles.
11.Mass transfer of hydrogen isotopes and water vapor through fluid film formed 

between geometrical surfaces of the pebbles and the purge gas flow.

Tritium mass transfer process
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Comparison of calculated with experimental

0 1 2 3 4
0.00

0.05

0.10

0.15

LiAlO
2
 (JAERI)

Li
2
ZrO

3
 (MAPI)

Li
2
TiO

3
 (CEA)

Li
4
SiO

4
 (FzK)

Temperature10,000ppmH
2
/N

2
 purge gas

in JAERI experiment

 

Time [hour]

T
ri

tiu
m

 c
on

ce
nt

ra
tio

n 
[ 
C

i/c
c]

0

200

400

600

800

T
em

pe
ra

tu
re

 [°
C

]

0 1 2 3 4
0.00

0.05

0.10

0.15

LiAlO
2
 (JAERI)

Li
2
ZrO

3
 (MAPI)

Li
2
TiO

3
 (CEA)

Li
4
SiO

4
 (FzK)

Temperature10,000ppmH
2
O/N

2
 purge gas

in JAERI experiment

 

Time [hour]

T
ri

tiu
m

 c
on

ce
nt

ra
tio

n 
[ 
 C

i/c
c]

0

200

400

600

800

T
em

pe
ra

tu
re

 [°
C

]

Estimated tritium release curves
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Numerical calculation based on the 
mass transfer model could 
reproduce experimental curves well.

Breeders: Li2TiO3, Li4SiO4, 
Li2ZrO3, LiAlO2

Purge gas: N2 gas (Dry gas),
H2 gas, H2O gas 
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Tritium release model
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Blanket module

Plasma

Heat load 
Particle load

Breeder Breedermultiplier multiplier

Cooling water Purge gas  (H2 is added in helium)

2m

0.6m
T permeation

 T permeation from solid breeder packed bed

 T permeation from plasma facing wall

To T recovery systemTo heat exchanger

(2) Permeation of tritium to cooling water
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J ：Permeation rate [mol･m/m2s]
D：Diffusivity [m2/s]

S：Soluvility [mol/m3Pa1/2]

K：Permeability [mol･m/m2s･Pa1/2]
y ：mole fraction [mol/mol]

tP：Hydrogen isotope pressure [Pa]
*R.G.Hickman, J.Less-Common   

Metals, 19 (1969) 369-383.
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F82H WaterBreeder
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Hickman’s law was applied.

300oC,100 PaH2 => 2.3 g/day

K. Katayama et al., Fusion Sci. Tech.71 (2017) 261.

Evaluated tritium permeation to cooling water
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Tritium behavior was calculated 
by TMAP code.

Tritium transport parameters 
were used from the data by 
Frauenfelder, Anderl for W,
and Serra for F82H. 

JA-DEMO condition (tentative)

Implantation depth was 
evaluated by SRIM code.

Tritium permeation rate through First wall
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MaterialParticle E(eV)Particle (1/m2/s)Surf T(oC)Surf(m2)Region

W-F82H
100Ion : 1020

3601067First 
wall 170Neutral ： 1020

Perm rate (g/day)
Perm flux
(g/m2/day)

Steady state [hour]Region

0.6926.49×10-42First wall

JA-DEMO condition (tentative)

Evaluated permeation rate in the first wall to cooling water

Total permeation rate in the blanket modules

2.3 g/day in breeding zone + 0.692 g/day in first wall
= around 3 g/day K.Katayama et al., Fusion Eng. Des. 169 (2021) 112576.

Evaluated tritium permeation rate in blanket



14 Technical Meeting on Tritium Breeding Blankets

Under KU-QST collaboration, we tried to investigate a T permeation rate from
pressurized water to pressurized water through an Inconel tube.

The experimental data on
tritium permeation from the
pressurized water to the
pressurized water in a heat
exchanger is not sufficient.

Evaluation of tritium permeation rate through the 
heat exchanger is very important for safety.

 T inventory in the secondary coolant. 

 T contamination level of the 
turbine system to design the 
maintenance system.

 T release rate to the 
environment through the 
condenser.

(3) T permeation from Primary to Secondary water
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The permeation device of a static double tube type with Inconel 600
equivalent tube and SS316 tube was assembled.

P

P

Vacuum pumpT water

Pressurized He H water

Pressurized He
Primary pressure

Secondary pressure

TC contacting 
with Inconel
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with SS316 Heater

One-side sealed 
Inconel tube

SS316 
tube

Sampling 
volume

Cooling 
fan

Cooling fan

T permeation

SS316

Inconel
H water

T water

Experimental set up for T permeation test

0.166 MBq/cm3300 oC
17 MPa
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T permeation from water to water

Tritium permeation was observed 17 days 
after heating started.
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Estimated permeability was 1/1000 of gas-
gas permeation and is same degree with
that estimated from CANDU reactor.

( 2T2O + Ni => T2 + Ni (OT)2 )
T permeation mechanism is under consideration.
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＊Reference: M. Nishikawa, private communication.

(4) Evaluation model for T balance in DEMO
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Tritium inventory is strongly dependent 
on MRT.
MRT = 5 days       Inventory = 2000g
MRT = 2.4 hours   Inventory = 40 g

If MRT is 2.4 hours instead of 5
days, the blanket inventory is
relatively small.
Isotope separation systems have 
the largest inventory.

MRT in Blanket from Recent data
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Recent data
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Influence of T permeation to cooling water
Asaoka model (1996) Model including cooling water

T inventory in each sub-system

Isotope separation system 

Cooling water

Breeding zone in blanket

 Estimated T inventory :
ISS > Blanket > Cooling water

Tritium inventory in the blanket and cooling 
water is relatively large following that in ISS.0 20 40 60 80 100 120 140 160 180 200
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Summary

1. T release behavior from Li ceramic breeder

From out-pile experiments and fundamental T lab experiments,
T release model including surface reactions are proposed and T release
behavior from neutron irradiated Li ceramic breeders can be predicted
approximately.

2. T permeation to primary cooling water

In JA DEMO conditions, it was estimated that T permeation is 2.3 g/day in 
breeding zone and 0.692 g/day in first wall, totally 3 g/day.

3. T permeation from primary to secondary cooling water

We successfully observed tritium permeation from tritiated water to light 
water through Inconel under conditions of 300 and 17MPa.

4. T balance in a DEMO reactor 

In T balance evaluation using the MRT method, T inventory in the cooling 
water and blanket seems to be the second largest following the ISS.


