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From stellarator optimization to neutronics

\7%

Stellarator physics optimization has produced

various stellarator configurations as shown in

figure

= Plasma shape (via Fourier coefficients) is varied so
that target functions relating to e.g. turbulence and
MHD stability are optimized [1]

= Produces optimized plasma and coils geometries

Stellarator neutronics modeling takes the

boundary shape of the plasma (LCFS) and coill

current curves as an input

Neutronics models have not been directly

included in physics optimization loop

Examples of stellarator magnetic configurations with different symmetries, from
left to right: quasi-isodnyamic, quasi-helical symmetric, and quasi-axisymmetric
[F. Warmer et al. Fus. Eng. Des. 202 (2024)].

[1] A. Goodman et al. Quasi-Isodynamic Stellarators with
Low Turbulence as Fusion Reactor Candidates, PRX
Energy 3, (2024) 023010



Generating a blanket model for stellarator

= How can we efficiently fit the breeding blanket into
the limited space between the LCFS and the coils in

stellarator configuration X?

+» Extension of the LCFS in the normal direction with

constant distance d to create plasma-shaped

HELIAS 5B (R=22 m, 5 period, 72 deg.) LCFS and
blanket layers coils.
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Generating a blanket model for stellarator

= How can we efficiently fit the breeding blanket into
the limited space between the LCFS and the coils in
stellarator configuration X?

<+ Extension of the LCFS in the normal direction with
constant distance d to create plasma-shaped

blanket layers
»  Blanket and VV cannot be fitted tightly within the coils

»  Not optimal for shielding and breeding volume

» Non-uniform blanket thickness d(u,v) is required

HELIAS 5B (R=22 m, 5 period, 72 deg.) LCFS and
coils.



Workflow for fitting the blanket between the
plasma and coils
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geometry layers with the
distance matrix information
using SBGeom [1,2] tool
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[1] T. Bogaarts, F. Warmer, ISFNT-15 (Poster), Spain (2023)

[2] Lyytien et al. Fus. Eng. Des. (2025), 216, 115000



Blanket configuration with no extra
shielding
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Blanket geometry with a dedicated shield
layer
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Breeding zone giving space for the shield
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Demonstrating coil shielding improvement
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TBR comparison
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Total TBR with no-shield and shield cases, including no-divertor and full blanket coverage
cases. Water-cooled divertor with 10 % area fraction from the FW and replacing the breeding
zone.

03/09/2025 VTT - beyond the obvious 11



Including divertor into consideration

= Divertor is an essential component integrated into the
blanket, which can take ~ 10 % of the first wall and also
BZ volume in HELIAS 5B

= Divertor components, especially the rear structures of the W
armor (coolant pipes and steel components) take up space from

the breeder material

= |sland divertor is the driver candidate for stellarators
= Placed on magnetic islands
= Placement can be controlled by magnetic field configuration

= Exact design highly open for stellarator pilot/power plants

plasma

o .k .
Twisted ﬁ
L2

W7-X divertor units. J. Fellinger et al. Nuclear Materials and
Energy 37 (2023) 101506



Effect of divertor placement on TBR

= Possibility to control divertor position and variation observed in tritium production
across the blanket

» Parameter study [2] for divertor placement and size, and also for coolant option,
material composition

TPR density [12/0m/\3S]
7.9e+11 1.0e+12 1.3e+1 1.6e+12 1.8e+12

Tritium production density in breeding zone

[2] Lyytinen et al. Fus. Eng. Des. 2025, 216, 115000.



Divertor neutronics model
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Effect of divertor placement
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Effect of divertor area

Changing divertor length and width
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More factors e.g. coolant choice, *

divertor thickness are considered in 5 -

Lyytinen et al. Fus. Eng. Des. 2025, 5 10 15 20 25 30
216, 115000. Divertor area / Total first wall area [%]

DCLL blanket and helium-cooled divertor with a 50 cm divertor body



Conclusions and outlook

v Automated parametric workflow for generating blankets and layered

geometries for different stellarator configurations demonstrated
v" Can include simple divertor models, possible to make H&CD ports
— More heterogeneous blankets and structures are a challenge and future work

» Currently applying this workflow for the new 4-period SQUID stellarator design

» Divertor area should be limited ~10 % of the first wall

B(T)
1150
‘ 0.85

A. Goodman et al. Quasi-Isodynamic Stellarators with Low
Turbulence as Fusion Reactor Candidates, PRX Energy 3,

» Advanced shielding materials must be allocated for coil shielding (2024) 023010

» WT7-X —like top-bottom divertor placement worked for HELIAS

» Reduces available breeding blanket (BZ/BSS) space and impacts TBR

» Necessitates targeted shield optimization in the most constrained regions



Thank you! Questions?

Special thanks to the collaborators: Timo Bogaarts (TU/e),
Antti Snicker (VTT), Petteri Lehti (VTT), Felix Warmer (IPP)
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