

The objectives and science basis of the LIBRTI test facility

Mark Gilbert, D. Foster, S. Bradnam, A. Davis, V. Martis, M. Lavrentiev, J. -Ch. Sublet

IAEA Technical Meeting on Tritium Breeding Blankets and Associated Neutronics, September 2-5, 2025

Outline

- Motivation for a test facility: the LIBRTI programme
- (Digital) Science objectives within LIBRTI R&D
- Simulations to test scientific feasibility
 - Modular solid-breeder mock-up design
 - Tritium production rates
 - "Ability to measure" assessment
- LIBRTI status

Fusion fuel cycle challenge

- Tritium ³H supplies are very limited, and each GW of deuterium-tritium fusion power will burn ~ 50 kg per year
- Thus, a viable fusion power plant must be tritium self-sufficient
- Developing technologies that will enable a plant to produce at least 1 ³H atom for each D-T reaction is a critical challenge for fusion
- This development needs to be accelerated ...

Estimates of tritium availability from fission sources (neglecting any use) Kovari et al. Nuclear Fusion 2017

LIBRTI: ~£200m Fusion Fuel Capability

- ✓ Predict and reproducibly achieve Tritium production
- ✓ Known quantity of tritium out for known quantity of neutrons
- ✓ Science Simulation underpinned by experiments
- ✓ Learn by doing Develop Skills
- ✓ Moving Science towards Engineering

A globally unique testbed for benefit to the fusion powerplant design and construction

Science and engineering goals for LIBRTI

- Deliver a facility capable of testing engineering scale (~ m³) mock-ups of tritium breeding concepts
 - Built around a neutron source producing DT fusion neutrons and sufficient flux to go beyond the current state-of-the-art (typically static) breeding tests
- Experimental programme(s) to design, test and manufacture mock-ups of breeding blanket concepts
 - Final goals are integrated engineering scale mock-ups tested at the LIBRTI neutron source

Why?

- 1. To improve understanding of the factors that determine tritium recovery rates
- 2. To develop new models and theory for an integrated multiphysics platform
- 3. To test, validate and verify the integrated models using LIBRTI measurements
- 4. Use those V&V models to design breeding solutions for fusion devices (including supporting the finalization of the UK-STEP blanket)

Modelling Tritium Lifecycle

How

- Repeated experiments on a mockup, varying single parameters and measuring the change in the response curve
 - → e.g., of tritium concentration in a sparge gas as a function of time
- Testing the models to confirm their ability to simulate the change impacts
 - Developing new models/theory as needed
- But to achieve the objective of a qualified Multiphysics platform we will need UQ...

UQ requirements

- Repetition is also needed because a single response curve for one set of parameters (single set-up of an experiment) won't be sufficient
 - > Measurement uncertainty
 - a series of repeated experiments to confirm response
 - campaigns of experiments

UQ requirements (2)

For a fixed experimental set-up, a LIBRTI simulation will have a distribution of initial conditions and produce a distribution of simulation outcomes
 and the equivalent set of experimental observations will also vary

• Simulation uncertainty $X_i = (\mathbf{x}_i, \sigma_{\mathbf{i}}(e), \phi_{is}(e), M_i(\mathbf{x}), \ldots)$

$$\vec{y} = f(\vec{X})$$

We are developing the infrastructure to enable the desired digital outcomes including UQ

Validation of science basis

Feasibility questions

- Are the performance characteristics of the intended LIBRTI facility and the neutron source sufficient to meet the experiments objectives?
- Will measurable levels of tritium be produced?
- Will a DT based neutron source interfere with tritium measurements in an experiment?
- The answers to these questions will inform further developments of the facility
- The answers have been investigated by preliminary simulations...

Pincell design

- Modular system Inspired by the DEMO HCPB design
- Motivated by providing a flexible, low-cost, design that can be used to test different breeder configurations in different neutron environments
 - Stainless steel (316) tubes
 - hexagonal cross section to enable pins to be integrated together
 - 2 cm multiplier layer (lead was assumed for the preliminary assessment)

Modular set-up

 Multiple pincells envisaged in a full-scale experiment

• For example: a 54 pincell arrangement:

- Potential opportunities from such a configuration:
 - ³H output variations in different locations as a function of different experimental configurations (different materials, different geometry, etc.)
 - Each pincell can be a different experiment and can be rapidly changed, re-used and sent for postexperimental analysis (attractive for universities in particular)

Opportunity? Importance of *cosines angular scattering

in Li and other materials of breeder systems

- 16O 400-100 keV negative mubar could enhance tritium production in the Li⁶ 240 keV resonance region needs design and testing (via pincells?)
- Relevant to breeder blanket designs that include O – such as Li₄SiO₄ ceramic

Neutron transport and tritium production

 Early results assuming breeder material based on the mixed ortho-silicate and titanate lithium ceramic produced via the KALOS process at KIT

Simulated estimates of tritium production rates:

	Without reflector	With reflector
Neutron source rate	5 x 10 ¹³ n/s	
Tritium production rate	4.4 x 10 ¹² ³ H/s	2.5 x 10 ¹³ ³ H/s
Equivalent activity	≈ 8 kBq/s	≈ 45 kBq/s

UK Atomic

- Tritium production rate per source particle per cm³ (10¹⁵ source strength)
- Can also consider, for example, a graphite reflector surrounding the 54 pincells

Measurement feasibility

- Liquid scintillation counting (LSC) is the current the best solution for high sensitivity measurements
- Sensitivities of 0.6 mBq/g can be achieved using coincidence correction and low background systems*
- Even accounting for delay of release from solid pebbles of KALOS the predicted tritium production rates will be readily detectable
 - For example: 1000 Bq/g/s release rates have been detected from 0.5 mm KALOS pebbles pre-loaded with ³H at 600 °C (Kolb et al. JNM 2017 v. 489)
 - More recently: Wu et al., in Int. J. Hydrogen Ene., 68, (2024) 1393 found that complete tritium release from LiTiO₃ irradiated at HINEG-CAS was achieved within 4 hours at ~1000K

Signal vs. noise consideration

 Will the signal from tritium generated in the experiment be lost in contamination from the tritium-based neutron source?

Early modelling of tritium transport from target chamber to an adjacent pincell:

- For a worst case upper bound: simple single wall of SS316 surrounding the tritium gas of the neutron source target chamber
- Estimate the rate of tritium diffusion out of the target chamber using change of concentration C solution via diffusion equation with diffusion constant D
- Compare to tritium production rate in the pins
- Consider different thicknesses (d) of steel ...

$$\frac{\partial C}{\partial t} = \nabla (D\nabla C)$$

Probability of contamination

Tritium diffusion into pincell for different wall thicknesses. T = 100 °C (intended operation T)

Uncertainty estimate for d=5 mm associated with different grades of steel, which have different diffusion coefficient D and solubility S

P of 3 H in target ~ 40 torr

 $C = S\sqrt{P}$

Higher temperatures

UK Atomic Energy Authority

- However, if there are higher temperatures due to insufficient cooling or loss of coolant the contamination will be faster
- not expected for target chamber, which must be kept below 100 °C, but experimental mock-ups will be at higher temperatures
- Constrains experiments but not detrimentally

Tritium diffusion into pincell for a wall thickness d=5 mm. T = 600 °C

LIBRTI status

Facility design

Neutron source

- LIBRTI is also sponsoring research to upgrade the Shine source
 - containment upgrades
 - Ion beam refinement

- Procured from SHINE (based in Wisconsin)
- 125 kW system
- 75 mA deuteron beam
- ~300 keV deuterons into tritium gas target
- 2.7 10¹³ n/s total DT-neutron output

LIBRTI – timeline

Summary

- LIBRTI will provide a unique test facility for the advancement of understanding on tritium breeding within fusion systems
- Modelling is critical to the design of breeding solutions for fusion power plant → developing and validating a modelling platform is a primary goal
- Early analysis of the expected LIBRTI set-up and a potential modular test mock-up confirms that measuring tritium production is feasible (in principle)
- Understanding of the scientific basis for LIBRTI will evolve as the facility is developed (and even once experiments begin)

Thank You

LIBRTI welcomes contributions/collaborations on all aspects of the project.

Please get in touch