

David Pickersgill, James Bailey, Michelle Baxter, Tom Barrett, Tom Deighan

Sensitivity: OFFICIAL

The Technology in this document is not subject to export control

Content

- ROBUST Introduction
- Work Package Overview
- Analysis Methods
- Ongoing/Future Work
- Summary

ROBUST – Introduction

Reliability Optimised Blanket Using Simulation & Test

The primary objective of ROBUST:

- Address the pre-concept & concept design/analysis of blankets through the application of Model Based Systems Engineering (MBSE) & the development of an Analysis Workflow
 - a) By engaging with industry standard engineering rigour and processes
 - b) To enable a structured and logical approach to blanket concept down-selection

This is a low-fidelity, design space exploration-type analysis workflow

- Attempts to quickly explore the available design space and provides a basis to down-select blanket concepts – comparative assessment
- These concepts can then be studied further with more accurate, higher-fidelity analysis (or other workflows)

Initial phase of the project has been a collaboration between UKAEA & Kyoto Fusioneering Ltd.

ROBUST - High Level Strategy

Work Package 1 – Systems Engineering (UKAEA & KF)

Work Package Overview

Systems & Risk Engineering (WP1)

Model-Based Systems Engineering (MBSE)

Systems modelling and requirements generation in the context of the system

- Provides a Basis for a Design Functional Models
- Define of the System Requirements
- Defines the Blanket Interfaces
- Defines the physical components in the design

Starts to define the 'roadmap' of analysis and experiments required to provide verification of a blanket design

Verification Planning

Understanding what experimental and analysis capability is required to assess and develop blanket designs

Failure Modes & Effects Analysis (FMEA)

How will the system fail, and how can we mitigate such failures early in the design?

Defines a non-design specific view of risk in the design based on the functional models – mitigation built in before a concept is created

Simulation Capability Development (WP3 & 4)

A custom Modelica library has been built to support 1D Hydraulic, Structural and Thermal Assessments. These are automated, linked analysis which passes data between them

> Performance criteria

Official **Export Control Rating: Not Listed © UKAEA 2025**

The workflow outputs simple performance criteria, which gives a comparative assessment of a concept's performance (to other concepts)

Simulation Capability Development (WP3 & 4)

Pin Breeder model integrated

An **Analysis Workflow** has been developed in **Ansys Optislang** to allow for fast and iterative analysis of blanket concepts:

- Neutronics
- Thermal Hydraulics
- Structural

Simple, performance criteria are output:

- TBR
- Pumping Power
- Structural Pass/Fail
- Maximum Structural Temperature

Validated vs. typical analytical solutions (but more validation is required – e.g. with FE models)

Design & Analysis (WP2)

Helium Cooled Pebble Bed*

G. Zhou et al., Energies 16(14) (2023), 5377

Helium Cooled Lithium Lead

EU DEMO HCLL (Aiello et al., 2014)

Examples of Blanket Concepts chosen in the Down-Selection

Blanket Type	Number	Structural	Breeder	Multiplier	Coolant	Purge
Solid Breeders	1	P91	Li2O	Be12Ti	He	Не
	2	Eurofer	Li2O	Be12Ti	He	He
	3	P91	Li4SiO4	Be12Ti	He	He
	4	Eurofer	Li4SiO4	Be12Ti	Не	Не
	5	• P91	KALOS	Be12Ti	Не	He
Liquid Metal Breeders	6	P91	LiPb	-	-	/-
	7	Eurofer	LiPb	-	- /	-
	8	SiC	LiPb	-	- *	-
	9	SiC	LiPb	-	He	-
	10	Eurofer	LiPb	-	He	-
	11	P91	LiPb	-	He	-
	12	P91	LiPb	-	CO2	_

From approx. **15 million initial concepts**, **12 Blanket concepts** have been down-selected using a combination of:

- A materials down-selection/optioneering
- A material compatibility assessment
- Initial TBR studies using the analysis workflow (TBR > 1.3)

Self-Cooled Lithium Lead

R. Pearson et al., IEEE Trans. Plasma Sci. 50(11) (2022), 4406-4412

CO2 Cooled Lithium Lead*

CFETR COOL (Chen et al., 2021)

Similar but not identical to existing concepts in literature

Analysis Methods - Example

Context slide of low fidelity analysis

Low-Fidelity Analysis Workflow - ROBUST

- Forms a Basis of a design (i.e. Pre-Concept/Concept)
- Can rapidly Determine Impact of change / Design space exploration
- Validated vs. analytical solutions, but further validation with FE models required
- Comparative analysis only, used only to make design choices, not accurate predictions of a concept's absolute performance
- Computationally inexpensive 10s of seconds per analysis

Higher Fidelity Analysis /Workflows

- Provides a more accurate view of a concept's performance
- Computationally more expensive
- Still absolutely required following the 'ROBUST' style workflow

These two styles of analysis/workflow should work together, with the first being a stepping stone to more detailed analysis

Blanket Definition

- 1. Define blanket concept 'families'
- 2. Develop primitives to represent designs
- 3. Assemble individual concepts for assessment

Modelica Library – ARTEMIS Suite

- Library of primitives for hydraulic, thermal, structural analysis
 - Extension of Modelica standard library
 - Applicable to other architectures or components
- Primitive components assembled into representations of components for analysis

Thermal conductor with volumetric heating

Solid Breeder Modelica Model Example – ARTEMIS First Wall Component

Zhou et al. Energies 2023, 16(14), 5377

Diagram of the ARTEMIS First Wall Component – demonstrating assembly of 'primitives' to create a simple first wall component model

Initial concept exploration - HCPB

- Initial sensitivity analysis completed
 - Down-selection of optimisation parameters, guided by requirements/TBR study volume fractions
- Optimisation completed, with objective to increase net power output, with constraints:
 - o TBR>1.3
 - Passing structural criteria
 - Passing temperature limits
- Geometric parameters varied labelled in diagram
- This is a preliminary analysis, further study can be completed

Zhou et al. Energies 2023, 16(14), 5377

Ongoing/Future Work

Present Analysis Capability

The current workflow has the capability to perform the following analysis:

- Neutronics
- Thermal Hydraulics
- Structural

Simple, performance criteria are output:

- TBR
- Pumping Power
- Structural Pass/Fail
- Maximum Structural Temperature

Analysis Capability in Development (25/26)

1D Deterministic neutronics

Integration with BlueMira and PROCESS for Tokamak and blanket geometry optimisation

preliminary safety assessments **Tritium Permeation** & Retention

inventory

assessment

Summary

- ROBUST has combined the application of Systems Engineering Techniques (including MBSE) with the development of an Analysis Workflow in Ansys Optislang
- These tools have been used as a basis to down-select a range of Liquid metal and Solid Breeder blanket concepts – 12 in total
- Further capability is being developed, in parallel to more rigorous validation

Examples of Blanket Concepts chosen in the Down-Selection

David.Pickersgill@UKAEA.uk

Blanket Type	Number	Structural	Breeder	Multiplier	Coolant	Purge
Solid Breeders	1	P91	Li2O	Be12Ti	He	Не
	2	Eurofer	Li2O	Be12Ti	He	He
	3	P91	Li4SiO4	Be12Ti	He	He
	4	Eurofer	Li4SiO4	Be12Ti	He	He
	5	P91	KALOS	Be12Ti	He	He
Liquid Metal Breeders	6	P91	LiPb	-	-	-
	7	Eurofer	LiPb	-	-	-
	8	SiC	LiPb	-	-	-
	9	SiC	LiPb	-	He	-
	10	Eurofer	LiPb	-	He	-
	11	P91	LiPb	-	He	-
	12	P91	LiPb	-	CO2	-