

R&D status in manufacturing and assembly of Breeding blanket at ASIPP

Wanjing WANG and Blanket R&D Team

Institute of Plasma Physics, CAS(ASIPP)

E-mail: wjwang@ipp.ac.cn

Outline

1 Introduction of Breeding Blanket

2 HIP Manufacturing

3 Additive Manufacturing

4 Conclusion and considerations

1. Breeding Blanket-Devices development

BEST configuration (R=3.6m, a=1.1m, 10-100MW)

■ Burning Plasma operation

• Fusion power: 10-100 MW

Operation: Q≥1@10-20 MW & Q≥5@100 MW

• High-model with α

☐ Test of materials and Blanket (TBM)

Licensing and safety

• Test of breeding materials and breeding blanket

CFETR configuration (R=7.2m, a=2.2m, 0.2/0.5/1/1.5GW)

□ D-T fusion reaction

Power: 200-1500 MW

SS operation: Q=1-5@Phase I & Q>10@Phase II

• High-model with α

☐ Tritium Self-sufficiency (Breeding blanket)

• TBR > 1

Licensing and safety

T factory, Remote handing

1. Breeding Blanket-Candidates

BEST-WCCB-TBM

BEST-COOL-TBM

CFETR-COOL

1. Breeding Blanket-Material selection

Water-Coolant Ceremic Blanket (WCCB)

- Coolant: water at 15.5 MPa, 285 °C/325 °C
- Structure materials: RAFM/ODS steel
- Plasma-facing Materials: W--2mm
- Breeder/multiplier: Li₂TiO₃/Be₁₂Ti
- Purge-gas: 1-3 bar He + 0.1vol% H₂
- Coefficient of thermal efficiency: ~ 33%

S-CO₂ Cooled Lithium–Lead (sCO₂-COOL)

- Dual Coolant: 8-9 MPa CO₂, 350 °C/390-410 °C;
 PbLi, 460 °C/600-700 °C
- Structure materials: RAFM/ODS steel
- Plasma-facing Materials: W—2mm
- Breeder/multiplier: PbLi
- Flow channel insert (FCI): SiC₄/SiC
- Coefficient of thermal efficiency: ~ 42%

We will focus on the manufacturing of WCCB module.

1. Breeding blanket-Manufacturing routes

□ HIP manufacturing route

Two steps: Components manufacture+assembly

Technologies: HIP+LW/EBW+TIG

□ Additive manufacturing route

2. HIP manufacturing-Issues

Three issues to be solved in the HIP manufacturing route

1. Materials preparation

- Rolling W plates
- RAFM or ODS steel materials
- Breeding materials
- Shield materials

2. Bonding technology

- W/RAFM bonding for First wall
- RAFM/RAFM bonding for FW,
 CP and DWT
- HIP, EBW, TIG and LW

3. Component Assembly

- TIG weld of DWT and manifold
- EB weld of FW and manifold
- EBW and TIG of cover plate and manifold

2. HIP manufacturing-W preparation

FW with W tiles

■ W plates for WCCB

- Ref: ITER D 2EDZJ4 v1.3, T/CITS 433
- Purity: 99.95 wt%
- Impurity conten(C, O, N, Fe, Ni, Si): 0.01 wt%;
- Density(ASTM B311): ≥ 19.0 g/cm³
- HV30(ASTM E92): ≥ 410
- Microstructure: Grade 3(ASTM E112)

□ Preparation process

- ✓ Sintering: 2000°C
- ✓ Rolling:1100-1300°C,
- ✓ Reduce rate: ~70%
- ✓ Annealing: 1100°C

Microstructure: Anisotropic and better than grade 4

2. HIP manufacturing-RAFM steel

□ RAFM steel for WCCB

Ref. standard: GB/T 38875-2020 (CLAM), EJ/T 20242-2020 (CLF-1)

	CLF-1 (wt.%)	CLAM (wt.%)
C	0.085-0.135	0.08-0.12
Cr	8.20-8.80	8.5-9.5
W	1.30-1.70	1.2-1.8
V	0.20-0.40	0.15-0.25
Ta	0.05-0.15	0.10-0.20
Mn	0.30-0.70	0.30-0.60
N	0.015-0.040	≤0.005
Fe	Balance	Balance
Others	< 0.01	< 0.01

	Tensile test			Impact test	Creep test	
T/°C	R _{p0.2} /MPa	R _m /MPa	A/%	KV ₂ /J	Strain/MPa	Cracking time/h
R.T	≥510	≥600	≥18	≥200		
450	≥400	≥450	≥18			
550	≥310	≥350	≥18		185	≥10000
600	≥230	≥300	≥18		135	≥1000

2. HIP manufacturing-W/RAFM bonding

□ Manufacture of First-Wall (FW) component

- Key issue: Dissimilar materials bonding between W-RAFM
- Solution: HIP+interlayer optimization

W RAFM钢

- CTE mismatch
- Brittle interphase formation

Interlayer optimization

Optimal Interlayer

2. HIP Manufacturing--FW components

- □ We have developed a one-step HIP technology to realize the W/RAFM connection and channel forming.
- □ Full-sized FW has been fabricated by two-step: HIP of 1/9 mockup and EBW assemblies

Full-sized FW

1/9 FW mockup

2.HIP Manufacturing-Qualification

□Water-immersion ultrasonic testing technology for W/RAFM interface and channel testing technology (hydrostatic pressure) have been developed for the welding quality of the first wall components.

Vacuum helium leak detection

Hydrostatic pressure @20MPa

2.HIP Manufacturing-Qualification

□A large-scale electron beam high heat flux test platform was designed and constructed, and was used to high heat flux tests of large-sized first wall components.

- HHFT@1 MW/m²
- Coolant: T-30°C, flow rate 0.096kg/s
- Max Temp.466°C

2.HIP Manufacturing-Double-wall tubes

- □ To prevent the crack from penetrating, it is proposed to adopt double-wall tubes to cool the breeding zone.
- Key issue: One-time welding of multi-bend, large-area interface in DWT
- Solution: Welding structure design + interlayer material selection.

2.HIP Manufacturing-Qualification for DWT

□The combination of metallographic and CT analysis indicates that a destructive + non-destructive testing technology for the interface welding quality of double-wall tubes has been developed.

Destructive testing: Metallographic analysis

Non-Destructive testing: CT analysis

2. HIP Manufacturing--Assembly

Requirement: Cooling water of FW, DWTs and CP should be input and output by manifold.

Solution: Pagoda type multi-layer structure manifold.

2. HIP Manufacturing--Assembly

Assembly route for WCCB

Based on the design of manifold, the assembly of the entire blanket module is divided into three steps:

- 1 The assembly of the DWT and manifold
- ② The assembly of the FW and manifold,
- 3 The assembly of the CP and manifold. The following details the specific process route and implementation.

2. HIP Manufacturing--Assembly

□Full-sized WCCB blanket has been assemblied by TIG+EBW technology (Feasibility)

2. HIP Manufacturing—TPB mockup

- □ In response to the tritium permeation barrier (TPB) requirements of the blanket flow channel, a new HIP manufacturing process route for the blanket module was proposed based on the excellent tritium barrier effect of iron-based tritium barrier materials.
- □ The high toughness connection of FeCrAl-RAFM steel was achieved by optimizing the alloying elements of RAFM steel and the welding process.

New HIP manufacturing route for TPB First wall Cooling plates Cooling tube Cooling tube

2. HIP Manufacturing—TPB mockup

- □ Optimized the process route, the integratation production of mockup with tritium permeation barrier in channel was achieved.
- □ Comprehensive hydrogen-barrier factor of mockup reaches 2500. (550°C)

2. HIP Manufacturing—TPB mockup

□ Based on the development of new TPB material plates and tubes, a larger-scale TPB mockup was fabricated, verifying the feasibility of the process.

2. HIP Manufacturing—Facilities

3. Additive manufacturing-Issues

□There are also three issues to be solved in the development of additive manufacturing technology route.

1. Materials issues

- Chemical element for RAFM or ODS steel
- Mechanical properties
- Radiation resistance

2. Scale magnification issues

- Thermal strain and cracking
- Support free in channel
- Homogeneity

3. Component intergratation

- W coating on RAFM steel
- RAFM/RAFM bonding for cover plates

3. Additive Manufacturing--Alloy design

Alloy design scheme based on additive manufacturing

RAFM steel:

The preparation process is mature.

The precipitation and coarsening are severe.

> Further increase the density of MX phase.

Completely eliminate the coarse precipitated phase at grain boundaries

ODS:

- **Excellent performance**
- It is difficult to prepare on a large scale.

CNA:

- The density of the MX phase has increased somewhat.
- The coarse phase in GB has not yet been eliminated.

Castable Nanostructured Alloys (CNAs)

High Temp Creep

Irrad / He Stability NFA/ODS

Complex Shape Possible

CNA

RAFM

Radiation Damage Limited

3. Additive Manufacturing--Alloy design

□Design:Addition of high Ti elements

□Results: a low-activation Interphase precipitation strengthen steel (LA-IPS) .

	C	Cr	Ti	W	Si	Fe
0.12Ti	0.056	9.14	0.12	0.94	0.16	Bal.
0.27Ti	0.075	8.90	0.27	0.82	0.086	Bal.
0.46Ti	0.076	9.16	0.46	0.96	0.088	Bal.
0.74Ti	0.069	9.13	0.74	1.03	0.093	Bal.

MX phase charaterization					
	9Cr RAFMs	9Cr CNAs	0.05C IPF		
Size, nm	~10-50	~3-20	~3-5		
Density, m ⁻³	10^{19} - 10^{20}	10^{21} - 10^{22}	10 ²² -10 ²³		

0.12Ti样品

■ A large amount of rod-shaped iron-rich carbides precipitated in the matrix.

0.27Ti样品

Fine MX phase (TiC) precipitated in the matrix, but no rod-shaped carbides precipitated.

3. Additive Manufacturing—Properties data

□High-temperature tensile、creep and irradiation data of this material have already been obtained.

LA-IPS steel has excellent high-temperature mechanical properties and radiation resistance.

3. Additive manufacturing-Crack

□Based on laboratory research, trial research was conducted on the prevention of cracking during and after the additive manufacturing of large-scale LA-IPS steel parts.

Substrate heating +Post fusion heat treatment

New Cooling Channel

3. Additive manufacturing—small-scale mockup

□The additive manufacturing of the small-scale mockup was carried out with optimized process.

3. Additive Manufacturing—Facilities

VIGA (100kg)

Provide alloy powders with high purity and element design for additive manufacturing platforms.

L-PBF (2mx2mx2.5m)

Additive manufacturing of largesized and complex-structured blanket RAFM steel components EB-PBF (2mx2mx0.5m)

Additive manufacturing of first wall tungsten coating on the surface of steel components.

4. Conclusion and considerations

■ Conclusion:

Two manufacturing technology routes for breeding blanket modules were proposed, and the manufacturing technology, assembly technology and detection technology was researched and developed..

- I. The full-scale WCCB module was successfully developed based on HIP technology.
- II. Research on the integral forming technology of advanced steel components for small-scale blanket modules based on additive manufacturing technology has been carried out.

□ Considerations:

- 1. Materials issues (New structure materials, breeding materials,...)
- 2. Manufacturing issues (Deformation control, Larger scale facilities such as HIP furnace, 3D printer ...)
- 3. Assembly issues (Qualification of weld, injecting of breeding materials...)
- 4. Standards for the HIP manufacturing technologies and additive manufacture (Pressurized vessel, Nuclear reactor...)

Thank you for your attention!