

DESIGN EXPLORATION AND
TECHNOLOGY DEVELOPMENT OF THE
STEP LI20 CERAMIC BREEDER
BLANKET

CHRIS HARRINGTON, ADITYA PIDAPARTHY, & THE STEP BLANKETS TEAM

OUTBOARD FIRST WALL AND BREEDER BLANKET SYSTEM LEAD

IAEA Technical Meeting on Tritium Breeding Blankets and Associated Neutronics

IAEA Headquarters, Vienna, Austria, 2nd - 5th September 2025

"DELIVER A UK PROTOTYPE FUSION ENERGY PLANT, TARGETING 2040, AND A PATH TO COMMERCIAL VIABILITY OF FUSION"

STEP MISSION

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

FUNCTIONAL REQUIREMENTS

Key Functional Requirements

STEP Prototype Powerplant (SPP) Specific Challenges

Breeder Blanket

Extract Thermal Power

Breed Tritium for Fuel Self Sufficiency

Provide Radiation Shielding

SEPTEMBER 2023: LIQUID LI AND ASSOCIATED CHALLENGES

Design Rationale

- Liquid lithium blanket provides greatest breeding within spherical tokamak constraints
- Helium cooling to reduce MHD issues
- Vanadium structure for Li compatibility

Blanket Specification

Type: Helium-Cooled Lithium

Coolant: Helium ~460 °C in, 600 °C out

Structural material: Vanadium

Breeder: Pure liquid Lithium (35–45%)

Li6 enrichment

Multiplier: None

Vanadium supply chain

Tritium extraction from lithium

Lithium safety and reliability

Helium leakage and pipe integration

Vanadium-lithium irradiation data

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

BREEDER OPTIONS: COMPARISON SUMMARY

Breeder	TBR	Tritium Transport/FC	Thermal Mgmt./Performance	Material Compatibility	Safety/Stability	Power	Composite Risk
Li	++	_	++			++	_
Li ₂ O	+	++	0	0	+	++	+
Li ₇ Pb ₂	++			0		++	0
Li ₄ SiO ₄	0	++	-	+	0	+	O
Li ₄ SiO ₄ -Li ₂ TiO ₃	-	++	-	+	0	+	0
Li ₈ PbO ₆	0	-		???	+	+	-
Li ₁₇ Pb ₈₃		-	++	+	0		
Li ₅₀ Pb ₅₀	++	???	++	???	???		
FLiBe		+	+		0	-	

	LEGEND
++	Looks very promising, Almost no issues found or very minor concerns.
+	Looks promising. Some issues found. But generally, looks manageable.
0	Middling performance or Some important concerns, or marginal properties. Needs further study.
-	Poor performance. Some major concerns, would require massive effort.
	Very Poor Performance. Mostly improbable for SPP timelines.
???	Significant unknowns/uncertainty constituting major risk for SPP timelines

STRUCTURAL MATERIALS: COMPARISON SUMMARY

Requirements	Target performance	Grade 92	Ti-modified Austenitic Stainless Steel
Resistance to irradiation swelling	Swelling at 10 dpa < 1%	< 1% up to 100s dpa (ion irradiation)	< 1% up to 50 dpa
High temperature strength (irradiated & unirradiated)	Yield strength > 300 MPa	> 150 MPa at 650°C	YS of ∼500MPa at 650°C
Creep rupture strength (unirradiated)	At 650°C for 5200h > 100MPa	~100MPa at 650°C (unirradiated)	~200 MPa at 650C
Resistance to irradiation induced embrittlement	DBTT < 350°C	249°C after n irradiation to 2.5dpa at 300°C	No DBTT
Low temperature hardening embrittlement after 10 dpa	Change in YS < 50%	Possible – YS increases 60% following irradiation to 6.5dpa at ~295°C.	YS increases 17% up to 51 dpa
Strain at rupture	(after 10 dpa) > 5%	Unlikely – total elongation 2.7% after at 6.5dpa	~9% up to 54dpa (at 510C) Creep rupture elongation ~2-3% after 5000hrs life (700C)
Fracture toughness at minimum operating temperature (10dpa)	> 70 MPa.√ <i>m</i>	Likley - KJq ~145MPa.m0.5 at 650°C	~60MPa.m0.5 at 400°C, irradiated at 410 °C
Time to LLW (~3FPY)	< 200 years	Yes (~30years)	No (~400years)
Supply chain readiness	TRL > 4	Yes (5-6)	Yes (DIN1.4970)
ΔTBR	>= 0	0	-0.03
Coatings compatibility	Good compatibility	CTE mismatch 44%	CTE mismatch 33%
Compatibility with CO2	Good compatibility	Formation of dual-layered oxide	High-Cr alloy.
H/He embrittlement	No concern	Unknown at relevant fusion conditions	Unknown effect of He generation at high energy n

SOLID BREEDER DESIGN SPACE

- Breeder Material: Lithium Oxide (Li₂O)
 - Coolant: Carbon Dioxide (CO₂)
 - Multiplier: Titanium Beryllide (Be₁₂Ti)
 - Structural Material: Ti-modified Austenitic Stainless Steel
 - Tritium Carrier (Purge) Gas: Helium
 - Coating: Yes (Yttria/Erbia/Alumina)
- Blanket Architecture: Work in Progress...

Context:

STEP Prototype Powerplant (SPP) breeding challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Li2O most feasible breeder with Timodified austenitic stainless steel

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Li2O most feasible breeder with Timodified austenitic stainless steel

TRITIUM BREEDING PERFORMANCE

- OpenMC model with radially and poloidally varying volume fractions of breeder, multiplier, structure, and coolant
- Placement of Be12Ti placed strategically to give maximal TBR increase per additional mass (most efficient near first wall at the equatorial plane)
- TBR plateaus with around 125 Te of BeTi

THERMAL PERFORMANCE ASSESSMENT

F. Hernandez et al., Fus. Eng. Des., 124 (2017) 882-886

- Assume a layout similar to DEMO HCPB design 2016
- Apply volumetric heating from OpenMC calculation
- Run Ansys steady state thermal analysis (simple thermal conduction problem)
- Coolant flow rates and HTCs calculated from energy balance and number of coolant channels

V _{coolant}	18 m/s
T _{in}	440 °C
Peak q"	27.1 MW/m ³
Li ₂ O layer height	14 mm
Be ₁₂ Ti layer height	25 mm
Plate height	5.5 mm

THERMAL PERFORMANCE ASSESSMENT

F. Hernandez et al., Fus. Eng. Des., 124 (2017) 882-886

- Assume a layout similar to DEMO HCPB design 2016
- Apply volumetric heating from OpenMC calculation
- Run Ansys steady state thermal analysis (simple thermal conduction problem)
- Coolant flow rates and HTCs calculated from energy balance and number of coolant channels

V _{coolant}	18 m/s
T _{in}	440 °C
Peak <i>q</i> "	27.1 MW/m ³
Li ₂ O layer height	14 mm
Be ₁₂ Ti layer height	25 mm
Plate height	5.5 mm

TRITIUM PERMEATION ASSESSMENT

- COMSOL model of unit cell to model tritium permeation into coolant
- Worst-Case Scenario:
 - Significant amount of bred tritium permeates into the coolant
 - Tritium Extraction System (TES) only recovers smaller amount of bred tritium
- Sensitive to temperature, but reduction not possible without significant decrease from 600 °C outlet temp
- Higher purge gas flow helps but quickly leads to high pumping powers

Importance of permeation reduction coatings and/or coolant detritiation

Breeding rate	2.5 x10 ⁻⁶ mol/s/m3
Gas velocity	2 cm/s
TES efficiency	90%
Present species	HT (not HTO)
Trapping effects	None

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Li2O most feasible breeder with Timodified austenitic stainless steel TBR above 1.0 feasible with ~125t Be₁₂Ti and peak Li₂O temps < 950 °C

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Li2O most feasible breeder with Timodified austenitic stainless steel TBR above 1.0 feasible with ~125t Be₁₂Ti and peak Li₂O temps < 950 °C

HISTORICAL ISSUES REPORTED WITH LI20

Stability, reactivity, and chemical degradation

- LiOH generation and equilibrium concentration
- Free oxygen equilibrium concentration
- Reactivity with CO₂

Corrosion and influence on structural material

- Contact corrosion rates
- LiOH corrosion rates
- Free oxygen corrosion rates
- (Dependency of structural material choice)

Mechanical degradation

- Sintering rates and temperature/ irradiation dependence
- Swelling rates under irradiation
- Creep deformation rates
- Mechanical strength
- Fracture / pulverisation under irradiation

Tritium diffusivity

- Dependency on oxide layer formation
- Dependency on grain growth, bubble or porosity formation
- Impact of manufacturing process
- Impact of redeposited corrosion products

HISTORICAL DATA: AN 800 °C TEMPERATURE LIMIT?

As we have seen (Section 2.1.2), a major concern with solid breeding materials is preventing them from experiencing temperatures outside their operating

range. For Li₂0 (see Table 5-3), this range is 410 to 800°C.

Jackson et al., A Review of Fusion Breeder Blanket Technology, CFFTP-G-84033, 1985

has a T_2O pressure of $\sim 10^{-5}$ atm. Substitution of these pressures into eq. (3) indicates that the Li_2O temperature should not exceed 800°C. The effect of 10 vppm

Tetenbaum and Johnson, Journal of Nucl. Mat. 120 (1984) 213-216

	P	RECOMMENDED TEMPERATURE LIMITS			
	MP, °C	ρLi, g/cm ³	K ^b , W∕mK	T _{min} , °C	T _{max} ,
Li ₂ O	1433	0.93	3.4	410đ	800c,h
γ-LiAlO ₂	1610	0.28	2.2	300d	1200f
L15A104	1047	0.61	2.3	350d	780g
L12S103	1200	0.36	1.5	410d	1000 f
L14S104	1250	0.54	1.5	320 d	950 f
Li ₂ ZrO ₃	1616	0.33	1.3	400e	1400 f
LigZr06	1295	0.68	1.5	350e	9808
Li ₂ TiO ₃	1550	0.33	2.0	400e	11858

Blanket comparison and Selection Study, ANL/FPP-83-1, Volume II, 1983

LIOH-H2O EQUILIBRIUM HISTORICAL ASSESSMENT

$$\mathrm{Li_2O(s)} + \mathrm{H_2O(l)} \;\;
ightleftharpoons \;\; 2\,\mathrm{LiOH(aq)}$$

- The <u>peak temperature limit</u> allowable for the Li2O is based on equilibrium concentrations of H2O and LiOH expected to be in the system
- The equation used is from *Tetenbaum*, *J. Nucl. Mater.* 120 (1984) 213–216:

$$\log P_{\text{(LiOH,g)}}/\text{atm} = -8635/\text{T} + 1/2 \log P_{\text{(H}_20,g)} + 4.57$$
 (19)

 This gives equilibrium partial pressures of LiOH and H2O at a given temperature

_			Achievable H2O concentration (ppm)								
Тетр	s in °C	100	<u>10</u>	1	0.1	0.01	0.001				
opm)	100	1041	1150	1277	1430	1616	1849				
ation (p	10	868	948	1041	1150	1277	1430				
ncentra	<u>1</u>	735	797	868	948	1041	1150				
ЮН со	0.1	629	679	735	797	868	948				
Allowable LiOH concentration (ppm)	0.01	544	584	629	679	735	797				
Allov	0.001	473	507	544	584	629	679				

- The 800 °C limit is chosen based on assumptions for:
 - The *allowable* LiOH concentration to limit loss of lithium from the breeder volume = 1 ppm
 - The achievable H2O/HTO concentration in the purge gas = 10 ppm
- Different assumptions in ppm will lead to different interpretations of the peak temperature limit

LIOH-H2O EQUILIBRIUM HISTORICAL ASSESSMENT

- The <u>peak temperature limit</u> allowable for the Li2O is based on equilibrium concentrations of H2O and LiOH expected to be in the system
- The equation used is from *Tetenbaum*, *J. Nucl. Mater.* 120 (1984) 213–216:

$$\log p_{\rm LiOH} = 4.5013 - 9297.9/T + 0.5 \log P_{\rm H_2O}$$
 (22)

C.E. Johnson et al., International Workshop on Ceramic Breeder Blanket Interactions, University of Tokyo, 1992

 This gives equilibrium partial pressures of LiOH and H2O at a given temperature

Tomi	Achievable H2O concentration (ppm)								
rem	os iri				Achieva	ble H2O co	ncentratio	n (ppm)	
(md	1	Tem	ps in °C	100	<u>10</u>	1	0.1	0.01	0.001
tion (p	:	(mda	100	1157	1276	1417	1586	1793	2051
centrai		ition (p	10	967	1055	1157	1276	1417	1586
Allowable LiOH concentration (ppm)	C	LiOH concentration (ppm)	1	821	889	967	1055	1157	1276
able Li	0	ЮН со	0.1	706	760	821	889	967	1055
Allow	0.	<u>e</u>	0.01	612	657	706	760	821	889
		Allov	0.001	535	572	612	657	706	760

- The 800 °C limit is chosen based on assumptions for:
 - The *allowable* LiOH concentration to limit loss of lithium from the breeder volume = 1 ppm
 - The achievable H2O/HTO concentration in the purge gas = 10 ppm
- Different assumptions in ppm will lead to different interpretations of the peak temperature limit
- Later data suggests an 889 °C limit for the same assumptions!

Li₂O IRRADIATION SWELLING

Programme	Reactor	Start	Li Burnup	Effective full power days	Reported Volumetric Swelling	Comments
FUBR-1A	EBR-II	1982	~0.5-3%		6 – 12%	Shrinkage @ 500 °C, attributed to poor moisture control and LiOH generation.
FUBR-1B	EBR-II	1985	2.5-7%		-8.5 – 4.4%	
BEATRIX-I	EBR-II	1986	7-11%*			500°C
BEATRIX-II: Phase I	FFTF	1990	4.8%	300	~4 – 7%	700°C
BEATRIX-II: Phase II	FFTF	1991	4.6%	203	*~20%	FIGURE 1
CRITIC-1	NRU	1986	1%		Not reported	900°C

Li₂O IRRADIATION SWELLING CONCLUSIONS

- Despite multiple irradiations, the data, reporting, and understanding of swelling of Li₂O is patchy.
 Swelling appears to be in the range of 5 8% but may be as high as 20%
- Influencing factors include:
 - Bulk temp / temp gradient
 - H₂O/T₂O concentration
 - Geometry/Particle dimensions
 - ⁶Li enrichment / burnup rate
 - Stress loading and creep rate
 - Initial density / porosity
 - Initial grain size
 - He retention & defect concentration

Further irradiation campaigns and post-irradiation characterisation are required to fully quantify and understand swelling susceptibility

 A mitigating factor for the SPP may be lower burnup, burnup rate and availability. However, limitations for commercial plant would still be present.

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Li2O most feasible breeder with Timodified austenitic stainless steel TBR above 1.0 feasible with ~125t Be₁₂Ti and peak Li₂O temps < 950 °C Reported risks with LiOH generation and swelling but must be considered in context of SPP

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Li2O most feasible breeder with Timodified austenitic stainless steel TBR above 1.0 feasible with ~125t Be₁₂Ti and peak Li₂O temps < 950 °C Reported risks with LiOH generation and swelling but must be considered in context of SPP

LI20 TESTING ROADMAP

Unirradiated testing

Irradiation campaign

Post-irradiation characterisation

5-YEAR BLANKET DEVELOPMENT ROADMAP

	2025	2026	2027	2028	2029
Milestones	♦	→	♦		♦
Design	Multi-physics mod integrated workflow	elling development: applied to module design			iteration: eedback from testing &
Development	Module Concept Design Development	Plant-scale segmented com integration with all Outboard	oonent design development and systems		gn for manufacture
Material	Unirradiated testing: breed coating compatibility	er, structure, & Fission	neutron irradiation materials to	esting for > 10 dpa in breeder/st	ructure
Testing		Proxy irradiation testing ou	utputs e.g. ion irradiation	Design by Fundamentals d	evelopment & validation
Manufacturing	Manufacturing trials: fundamental processes	Manufacturing prototype pro trials e.g. coatings, joining	Module-scale	e prototype manufacture demo	nstration
Trials	for materials and quality control	Unit cell prototype manufa	cture demonstration		
Tritium Breeding & Transport Performance		Tritium permeation testing irradiated base material sam		Module-scale tritium breed with D-T neutron source e.g.	
Heat Transfer & Mechanical Loads Performance		FW Unit cell High Heat Flu (Non-irradiated, elec. heating	_	Module-scale thermal-mec high temperature and B-field	

SUMMARY

Context:

STEP Prototype
Powerplant
(SPP) breeding
challenges

Background:

Breeder and structural material re-selections

Design Exploration:

Performance window and design constraints

Technology Challenges:

Known risks and potential mitigations

Future Roadmap:

Testing and technology demonstration needs

Highly constrained spherical tokamak design, liquid lithium breeder deselected

Li2O most feasible breeder with Timodified austenitic stainless steel TBR above 1.0 feasible with ~125t Be₁₂Ti and peak Li₂O temps < 950 °C Reported risks with LiOH generation and swelling but must be considered in context of SPP Near term testing priorities for known breeder risks; rapid progression to component scale required

THANK YOU ANY QUESTIONS?