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WCLL BB architecture
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O Water in PWR conditions as coolant: 15.5 MPa, 295-328°C

U Dedicated water coolant circuits for FW (channels) and BZ (DWTs)

U Eutectic PbLi alloy as neutron multiplier (Pb), tritium breeder (6Li at 90% enrichment) and
trittum carrier

O Single segment structure with elementary cell approach

O Eurofer as structural material, Tungsten coating in plasma facing surfaces
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WCLL TER architecture
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Nuclear Heating (W/cm?)

Neutronic analyses 1/2
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Nuclear analysis performed on a fully heterogeneous
model set-up with MCNP5v1.6 Monte Carlo code

""""" O Nuclear quantities as nuclear heating, neutron fluxes,
trittum generation rate, He generation and damage
(dpa) calculated

O Shielding requirements on TFC (109 n/cm?s) and
Vacuum Vessel (5-10-5 W/cm?) fully satisfied

U Tritium Breeding Ratio (TBR) slightly increased
from 1.14 to 1.142, closer to the target value of 1.15
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Neutronic analyses 2/2

14%

0 IB & OB TGR radial profiles @ equatorial BUs, show
similar behaviour with a maximum behind the FW
(5-10'2 mol/cm3/sec vs 5.5 mol/cm?/sec) and constant

12%

g reduction of the TGR along BZ and LiPb manifold
%f 0 TGR poloidal profile on BZ only, shows most of the
£ - Trittum is produced in the Outboard sector, with a

B
*

peak on OB4 due to harder neutron spectrum
impinging on the equatorial outboard

b
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O Sensitivity analyses on TBR vs BZ DWTs location:
analyses confirm that a 15 mm radial displacement
allows to achieve the TBR design target (1.15)
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Tritium transport simulations

Parameter Value Time eyl

0.00 0.02 0.04 0.06 0.08 0.10

Blanket T generation rate [g/day] 320.26 ' ‘ ‘ : : :
n-vessel PbLi volume [m3 878.56
-vessel PbLi volume [m3 508.84

otal PbLi mass flow rate [kg/s] 954

n-vessel water volume [m? 195.31

324.29
otal water mfr[kg/s 9936

Permeation surface in OB slice [m?] 1.4

105 mg/day in the BZ

—— Tubes
— PW
—— Manifold

13 mg/daylthrough the FW

PRF in wetted surfaces [- 100 —
80 10 mg/day in the Manifolds
658 10° T PR B
O Tritium transport models at system level developed with EcosimPro to study effect of the -
helical tube-layout and manifold arrangement o 12 w
O 3-trap model featuring two high energy traps were adopted o
O Smaller permeation surface and colder PbLi temperature reduced tritium permeation rates £
from PbLi to water of a factor 2.2. Similar trend observed in the FW, reduction of a factor ;
1.33 calculated :
U Trapped inventories (~100g) are highly dependent on high energy trap density and ’

hydrogen dynamics. Hydrogen competes with Tritium to fill the traps T AR

Time [days]
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Thermo-hydraulic analyses: Segment

Inner view

(a) (b) () O Original layout (Z-manifold) led to un-even mass
Outlet Upper — an on . . . . .
branch . i same sevel flow distribution along the poloidal abscissa.

the upper branch

e a U The new U-manifold improve the flow distribution in
the BUs
sorom O Different CFD sensitivity analyses were performed to

evenly distribute the BZ inlet water at the different
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Thermo-hydraulic analyses: Breeding Unit

O Detailed CFD analyses: slices at equatorial
(IB and OB) and pedestrial slice (OB - close
to divertor area)

BU layout

Equatorial
elevation BU

O Ansys-CFX code calculation
* equatorial level 4 FW channels/slice, pedestrial
slices 6 FW channels/slice
* steady-state calculation assuming solid PbLi
* k-0 SST turbulence model in water

. inlet water T in FW channels and DWTs of 295
MW/m2 oC

Bottom
elevation BU
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Thermo-mechanical analyses

U Behaviour of the PbLi and Water Manifold region, to optimise its geometrical layout.
Results confirms that the “model v4” shows a good structural behaviour fulfilling
every criterion within all paths with a large margin over the limit imposed by the
standard

U Equalize pressure in each water manifold chamber, plates pierced to evaluate the
impact of the holes number, diameter and location. Configurations equipped with 3

holes per cell, with a diameter equal to 10mm, withstand the loads and boundary — —
conditions related to the NO and OP loading scenarios W
O Numerical assessment of ratcheting, fatigue and creep-fatigue of the WCLL BB FW v4

v The vertical SPs have been
I elongated up to the BSS

Von Mises stress
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Structural analyses 1/2

O Structural analysis of the COB segment and determination of the Dynamic Amplification Factors (DAF)
=  Computation of the DAF for the WCLL DEMO COB segment, in order to include dynamic effects of a plasma VDE-up in static
analyses
U Structural analysis for the development of a BB attachment system to the Vacuum Vessel. A spherical bearing is
envisaged in the bottom area of the segments (similar solution adopted for ITER cryostat). Two solutions are being

studied for the upper area:

a) COHHeCtlng rOd Support name Analisys Max response [MN] DAF
. . 3 —o—dynamic -
b) Vertically guided system — Toroidal reaction force [N] g e Toprightradial  Dynamic 268 .
& % & toroidal Static 2.04 :
6.0E+05 Dynamic Analysis Peak = i N : -
e io
4.0F+05 Static Analysis Peak Top left radial Dynamic 1.35 11
JOE+08 & toroidal Static 125 :
20E+05 B Dynamic 0.922
LOE+0S Top left vertical Static 079 1.2
0.0E+00 : Dynamic 0.625
Port right Static 0270 23
Dynamic 0.6
Port left Static 0233 26
Bottom right Dynamic 185 11
radial Static 1.68 .
Bottom right Dynamic 175 10
vertical Static 173 2
Bottom left Dynamic 176 11
radial Static 164 2
Bottom left Dynamic 199 12
vertical Static 1.68 g
g Dynamic 291
I | | Bottom toroidal S g 13
max 2.6
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Structural analyses 2/2

O All the supports of the blanket have been analyzed under both static and dynamic conditions, and
for each, a Dynamic Amplification Factor (DAF) has been determined for the static analysis that
best approximates the dynamic behavior

O For node 12, a DAF of 3.5 is required, whereas for the other nodes a DAF of 1.77 would have
been sufficient. This highlights the need to differentiate between the type of constraints supports
with a well-established, gap-free contact, and those with localized gaps in the upper section, as
observed at node 12. The DAF values are high due to the geometry and the clearances in the
supports.
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MHD analyses — Helical pipes and manifold

L Magneto-convective analysis of the OB equatorial cell equipped with helical-DWTs

* Buoyancy responsible for two 3D convection cells adjacent to FW ,

* Heat transfer consistent with previous predictions, higher margin on Tmax compared with "/ -~ L
pure conduction

L Hybrid analysis of the PbLi Manifold

*  Optimization of manifold and expansion chamber to reach uniform PbLi flow partitioning .
in all BUs
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MHD analyses - Effect of gravity orientation on TH performance

Velocity

! 1.230e-03
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—

Thermal and electromagnetic A @
BCs are equal across the 3 models

1: Apical 515.5 0.10292
2: Equatorial 512.8 0.11125
3: Near-

divertor 522.2 0.11584

O Orientation consistent with
OB apical and near-divertor

elementary cells

O Limited effect, increase in
temperature for near-divertor

cell
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Manufacturing activities: FW/SP mock-ups by HIP process

O Manufacturing a mock-up with 2 breeding units

 Realization of a mock-up with 4 breeding units

according

O HIP process

2. Grade 91 material Supply to remove oxides, scratches,...

8. Characterizations

'\ ‘/
4—— 6.HIPcycle

1. BU manufacturing

this manufacturing route

i8¢

3. Machining + welding
Cutting sheet
Grinding plates

GTAW and L q
andtaser 4. Cleaning

to remove oils, dirts,...

)

5. Canister operations
(loading, degassing, welding, thightness
test)

149.& 155: presence of Si, Cr, V
ich oxides

7. Post HIP heat treatment

2. BUs assembling
Hil

P cycles
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Manufacturing activities

O Alternative assembly technology for the Double Wall Tube
(DWT) / Back Plate (BP) junction other than GTAW welding
process = expansion methods

7 Pressurise
=84 zone

H] Cimblot

Hydraulic Mechanical

STEP 1: PREFORMING STEP 2: CRIMPING

Pre-forming — end of cycle cycle
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Other activities: water chemistry

1 HO; LR

DWT2/eppl

No hydrogen addition

—ENEIX

Concentration (M)

[ DWT 1,

e S

[H:] (ppb)

O The importance of pH control emerges as
crucial to minimizing the influence of iron
ions and, consequently, hydrolysis

O It is necessary to keep the ‘impurity’ level as
low as possible, especially the [Fe*'], to
avoid any interference with the mechanism
of water recombination

. |0 H, effectively suppresses oxidants when its

concentration  exceeds  the
hydrogen concentration (THC)

threshold

0 THC increases with pH, requiring higher
hydrogen levels in alkaline conditions.
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Other activities: SYS-TH and CHF experiments
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Other activities: experiments — W-HYDRA platform

O Water Loop (WL): high pressure (15.5 MPa)
water loop with the capability of hosting
different test sections

U LIFUS5/Mod4: PbLi loop reproducing that

foreseen for the ITER WCLL-TBM. It is

integrated with the WL to investigate the

PbLi/water interaction at TBM scale

PbLi-water interaction experiments

Pipe forest
(remastered)

Test section \ 7\,\
area l )

/ AT i
2 L

,,/)\‘></ N/ //k

T I =~ Recirculation tank i
P £

— ion valves achment poin
FW PMU pre-test analyses H“ ol e! Tt the PoLi
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Conclusions and future perspectives

O The design of the WCLL BB concept has been continuously updated during last years to improve its
performances and to outdo existing criticalities

L The adoption of helicoidal DWTs and the new BZ manifold layout have allowed the improvements of several
figures of merit to be reached

L The neutronic and tritium transport analyses show encouraging results for the performance of the WCLL BB
concept

L Once the different sensitivities are finalised, global analyses will be re-run to assess the general behaviour of the
WCLL BB in the new DEMO LAR configuration to improve geometry and layout optimization

L Due to the advanced design stage reached by the WCLL BB concept, it is now mandatory to test the
manufacturing and assembly of the different breeding units and segment to verify the reliability of this BB
concept

O It will be of pivotal importance the construction and commissioning of experimental facilities (e.g. WHYDRA,
MAPLE, HADES) for the testing and qualification of selected prototypical mock-ups, as well as continuing the
code development and validation activities.
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