

Artificial Intelligence

Can a Large Language Model replace a scientist?

Artificial Intelligence

Can a Large Language Model replace a scientist?

Hands-on: Let's give it a try!

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

Hands-on: Let's give it a try!

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

Physical Parameters,

Hands-on: Let's give it a try!

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

ע

Physical Parameters, Technical Parameters

Hands-on: Let's give it a try!

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

Answer form ChatGPT:

Physical Parameters, Technical Parameters

To calculate the bulk modulus of aluminum using the Atomic Simulation Environment (ASE) with the Effective Medium Theory (EMT) potential, you can follow these steps:

- 1. Set up the aluminum bulk structure.
- 2. Assign the EMT calculator to the structure.
- 3. Compute the energies at different volumes by scaling the unit cell.
- 4. Fit the calculated energies and volumes to an equation of state (EOS).
- 5. Extract the bulk modulus from the EOS fit.

Hands-on: Let's give it a try!

Answer form ChatGPT:

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

[2]: # Create an aluminum bulk structure al_bulk = bulk('Al', 'fcc', a=4.05, cubic=True)

```
[3]: # Attach the EMT calculator
al_bulk.calc = EMT()
```

[4]: # Define a range of scaling factors for volume scaling_factors = np.linspace(0.94, 1.06, 10) # Scale between 94% and 106% volumes = [] energies = []

Hands-on: Let's give it a try!

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

Answer form ChatGPT:

Hands-on: Let's give it a try!

Answer form ChatGPT:

Calculate the bulk modulus for aluminium with ASE using

the EMT simulation code.

volumes.append(al_bulk.get_volume()) energies.append(al bulk.get potential energy())

[6]: # Fit the Equation of State (EOS) eos = EquationOfState(volumes, energies) v0, e0, B = eos.fit() # Fit returns equilibrium volume, energy, and bulk modulus

[7]: # Print results print(f"Equilibrium volume: {v0:.2f} Å³") print(f"Equilibrium energy: {e0:.2f} eV") print(f"Bulk modulus: {B:.2f} GPa")

> Equilibrium volume: 62.50 Å³ Equilibrium energy: -0.03 eV Bulk modulus: 0.26 GPa

Hands-on: Let's give it a try!

Answer form ChatGPT:

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.


```
[6]: # Fit the Equation of State (EOS)
eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit() # Fit returns equilibrium volume, energy, and bulk modulus
```

[7]: # Print results
print(f"Equilibrium volume: {v0:.2f} Å³")
print(f"Equilibrium energy: {e0:.2f} eV")
print(f"Bulk modulus: {B:.2f} GPa")

Equilibrium volume: 62.50 Å³ Equilibrium energy: -0.03 eV Bulk modulus: 0.26 GPa

Hands-on: Let's give it a try!

Answer form ChatGPT:

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

Print results
print(f"Equilibrium volume: {v0:.2f} Å³")
print(f"Equilibrium energy: {e0:.2f} eV")
print(f"Bulk modulus: {B:.2f} GPa")

Equilibrium volume: 62.50 Å³ Equilibrium energy: -0.03 eV Bulk modulus: 0.26 GPa

Experiment: 62 GPa

Hands-on: Let's give it a try!

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

With Correction: 40 GPa Experiment: 62 GPa

MPI for Sustainable Materials | Jan Janssen

https://chatgpt.com

Hands-on: Let's give it a try!

Calculate the bulk modulus for aluminium with ASE using the EMT simulation code.

Debugging:

eos.fit??

Signature: eos.fit(warn=True) def fit(self, warn=True):

The code produced by ChatGPT 40 can be executed. The generated code is >90% correct, but the scientific result is wrong.

```
print(B / kJ * 1.0e24, 'GPa')
```

With Correction: 40 GPa Experiment: 62 GPa

MPI for Sustainable Materials | Jan Janssen

https://chatgpt.com

Materials Informatics Group

Our Expertise: Workflows for Sustainable Materials

Materials Informatics Group

Our Expertise: Workflows for Sustainable Materials

MPI for Sustainable Materials | Jan Janssen J. Janssen, et al., Comp. Mat. Sci. 161 (2019) - https://pyiron.org

Materials Informatics Group

Our Expertise: Workflows for Sustainable Materials

MPI for Sustainable Materials | Jan Janssen J. Janssen, et al., Comp. Mat. Sci. 161 (2019) - https://pyiron.org

pyiron based Large Language Model Interface for Atomistic Simulation

8	+	Ж		Ċ		-	G	••	Code	~	Notebook 🗋	Ŭ	Python 3 (ipyker	nel) 🔿 🔳
	[1	1:	%re	load	_ext	lar	ngsi	m						
8) [2]:	%%cl I ai Can	hat m lo you	okin com	g f a	or a e th	mat e bu	erial w Ik modu	ith a bulk lus for th	c modulus in the ne noble metals	rar usir	nge of 200 GPa. ng EMT for me?	
\$			Her	e are	the	com	nput	ed b	ulk modu	li for the no	ble metals using t	he E	MT model:	
			•	Gole	d (Aı	u) : 1	73.8	6 GF	Pa					
			•	Silv	er (A	\g) :	100.	15 G	Pa					

• Platinum (Pt): 278.20 GPa

Among these, Platinum (Pt) has a bulk modulus within the range of 200 GPa.

pyiron based Large Language Model Interface for Atomistic Simulation

6 + %	□ □ ► ■ C ► Code Notebook □ Python 3 (ipykernel) ○ ■
[1]:	%reload_ext langsim
(2) ^[2] :	‰chat I am looking for a material with a bulk modulus in the range of 200 GPa. Can you compute the bulk modulus for the noble metals using EMT for me?
S	 Here are the computed bulk moduli for the noble metals using the EMT model: Gold (Au): 173.86 GPa Silver (Ag): 100.15 GPa Platinum (Pt): 278.20 GPa Among these, Platinum (Pt) has a bulk modulus within the range of 200 GPa.
(3]:	‰chat How does this compare to experiment?
S	 Here are the experimental bulk moduli for the noble metals: Gold (Au): 180 GPa Silver (Ag): 100 GPa Platinum (Pt): 230 GPa

pyiron based Large Language Model Interface for Atomistic Simulation

8	+	Ж	Ū	Ċ			C	••	Code	\checkmark		Noteb	book 🗋	Ŭ	Python	3 (ip	ykernel)	○ ■
	[1	1]:	%re	load _.	_ext	lar	ngsi	m										
8) [2	2]:	%%c I ai Can	hat m lo you	okin com	g fa pute	or a e th	mat e bu	erial wit Ik modulu	h a bul s for t	lk moo the no	dulus oble m	in the etals	ran usin	ge of 2 g EMT 1	200 (for r	GPa. ne?	
\$																		

> Entering new AgentExecutor chain...

```
Invoking: `get_atom_dict_bulk_structure` with `{'chemical_symbol': 'Au'}`
numbers=[79] positions=[[0.0, 0.0, 0.0]] cell=[[0.0, 2.04, 2.04], [2.04, 0.0,
2.04], [2.04, 2.04, 0.0]] pbc=[True, True, True]
Invoking: `get_atom_dict_equilibrated_structure` with `{'atom_dict': {'number
s': [79], 'positions': [[0.0, 0.0, 0.0]], 'cell': [[0.0, 2.04, 2.04], [2.04, 0.
0, 2.04], [2.04, 2.04, 0.0]], 'pbc': [True, True, True]}, 'calculator_str': 'em
t'}`
```

	Step	Time	Energy	fmax
LBFGS:	0	19:55:11	0.002606	0.308859
LBFGS:	1	19:55:11	0.000032	0.077808
LBFGS:	2	19:55:11	-0.000135	0.003099
LBFGS:	3	19:55:11	-0.000135	0.000029
LBFGS:	4	19:55:11	-0.000135	0.00000

pyiron based Large Language Model Interface for Atomistic Simulation

8	+	Ж		Ċ		•	C	••	Code	\checkmark		Note	book 🗋	Ŭ	Pyth	on 3 ((ipyke	rnel) 🔘	
	[1	1]:	%re	load _.	_ext	: laı	ngsi	m											
8) [2	2]:	%%cl I ai Can	hat m lo you	okin com	ig f o iputo	or a e th	mat e bu	erial wi lk modul	th a bul us for t	lk mod the no	lulus ble m	in the metals	e rar usir	ige of ig EM ⁻	f 200 F for	0 GPa r me?	•	
\$																			

> Entering new AgentExecutor chain...

Invoking numbers=	g: `get_atom_dic =[79] positions=	t_bulk_structure` [[0.0, 0.0, 0.0]]	<pre>with `{'chemical_ cell=[[0.0, 2.04, e Truel</pre>	symbol': 'Au'}` 2.04], [2.04, 0.0,
Invoking s': [79] 0, 2.04] t'}`	; `get_atom_dic , 'positions': , [2.04, 2.04, 0	t_equilibrated_st [[0.0, 0.0, 0.0]] 0.0]], 'pbc': [Tr	ructure` with `{'at , 'cell': [[0.0, 2] ue, True, True]},	tom_dict': {'number 04, 2.04], [2.04, 0. 'calculator_str': 'em
S	Step Time	Energy	fmax	
LBFGS:	0 19:55:11	0.002606	0.308859	
LBFGS:	1 19:55:11	0.000032	0.077808	
LBFGS:	2 19:55:11	-0.000135	0.003099	
LBFGS:	3 19:55:11	-0.000135	0.000029	
LBFGS:	4 19:55:11	-0.000135	0.00000	

pyiron based Large Language Model Interface for Atomistic Simulation

	+ %	□ □ ► ■ C ► Code ➤ Notebook □ Python 3 (ipykernel) ○ ■
		%reload_ext langsim
\otimes		%%chat I am looking for a material with a bulk modulus in the range of 200 GPa. Can you compute the bulk modulus for the noble metals using EMT for me?

Using specialized agents, the Large Language Model (LLM) can interface with atomistic simulation codes and utilities.

2.04], Invoking s': [79] 0, 2.04] t'}`	[2.04, 2.04, 0 g: `get_atom_d:], 'positions'], [2.04, 2.04	.0]] pbc=[True, T ict_equilibrated_: : [[0.0, 0.0, 0.0 , 0.0]], 'pbc': [`	rue, True] structure` with `{'at]], 'cell': [[0.0, 2. True, True, True]}, '	om_dict': {'number 04, 2.04], [2.04, 0. calculator_str': 'em
9	Step Time	Energy	fmax	
LBFGS:	0 19:55:11	0.002606	0.308859	
LBFGS:	1 19:55:11	0.000032	0.077808	
LBFGS:	2 19:55:11	-0.000135	0.003099	
LBFGS:	3 19:55:11	-0.000135	0.000029	
LBFGS:	4 19:55:11	-0.000135	0 . 00000	

Transferable Machine-Learned Interatomic Potentials

Generate a diverse training set based on maximizing the informational entropy

MPI for Sustainable Materials | Jan Janssen M. Karabin, et. al. J. Chem. Phys. 153, 094110 (2020)

Montes de Oca Zapiain, D., et al. npj Comput Mater 8, 189 (2022).

Transferable Machine-Learned Interatomic Potentials

Generate a diverse training set based on maximizing the informational entropy

MPI for Sustainable Materials | Jan Janssen M. Karabin, et. al. J. Chem. Phys. 153, 094110 (2020)

Montes de Oca Zapiain, D., et al. npj Comput Mater 8, 189 (2022).

Transferable Machine-Learned Interatomic Potentials

Generate a diverse training set based on maximizing the informational entropy

MPI for Sustainable Materials | Jan Janssen M. Karabin, et. al. J. Chem. Phys. 153, 094110 (2020)

Montes de Oca Zapiain, D., et al. npj Comput Mater 8, 189 (2022).

Divers Training Sets

Automated Small SYmmetric Structure Training (ASSYST)

Space Group Symmetry based Structures

Divers Training Sets

Automated Small SYmmetric Structure Training (ASSYST)

MPI for Sustainable Materials | Jan Janssen

Divers Training Sets

Automated Small SYmmetric Structure Training (ASSYST)

MPI for Sustainable Materials | Jan Janssen

M. Poul, L. Huber, E. Bitzek and J. Neugebauer., Phys. Rev. B 107 (2023)

Can we leverage computationally more efficient less complete basis sets?

Energy Cut-off Convergence at Maximum Kpoint Mesh

Can we leverage computationally more efficient less complete basis sets?

Energy Cut-off Convergence at Maximum Kpoint Mesh

Can we leverage computationally more efficient less complete basis sets?

Energy Cut-off Convergence at Maximum Kpoint Mesh

Can we leverage computationally more efficient less complete basis sets?

Energy Cut-off Convergence at Maximum Kpoint Mesh Kpoint Mesh Convergence at Maximum Energy Cut-off

Uncertainty Propagation from Density Functional Theory

Can we leverage computationally more efficient less complete basis sets?

Energy Cut-off Convergence at Maximum Kpoint Mesh Kpoint Mesh Convergence at Maximum Energy Cut-off

For Fitting a Machine Learned Interatomic Potential

Low 0.5 k-spacing 500eV 19s

High 0.1 k-spacing 900eV 996s

20 000 configuration

20 000 configuration

For Fitting a Machine Learned Interatomic Potential

For Fitting a Machine Learned Interatomic Potential

5.60

For Fitting a Machine Learned Interatomic Potential

5.60

For Fitting a Machine Learned Interatomic Potential

For Fitting a Machine Learned Interatomic Potential

For Fitting a Machine Learned Interatomic Potential

MPI for Sustainable Materials | Jan Janssen

DFT Uncertainty in the Training Data

For Energies and Forces

DFT Uncertainty in the Training Data

For Energies and Forces

MPI for Sustainable Materials | Jan Janssen

DFT Uncertainty in the Training Data

For Energies and Forces

MPI for Sustainable Materials | Jan Janssen

```
Less Complex MLIP (2JMax = 6)
```



```
Less Complex MLIP (2JMax = 6)
```


Coupling of MLIP Precision and DFT Precision

Less Complex MLIP (2JMax = 6)

More Complex MLIP (2JMax = 10)

Impact of MLIP Complexity Coupling of MLIP Precision and DFT Precision

MPI for Sustainable Materials | Jan Janssen

Beryllium and Tungsten

DFT precision: solid: 0.5 kspacing 500 eV encut

Beryllium and Tungsten

DFT precision:

solid: 0.5 kspacing 500 eV encut dashed: 0.25 kspacing 700 eV encut dotted: 0.1 kspacing 900 eV encut

Beryllium and Tungsten

DFT precision:

solid: 0.5 kspacing 500 eV encut dashed: 0.25 kspacing 700 eV encut dotted: 0.1 kspacing 900 eV encut

Beryllium and Tungsten

Computational Cost calculating Molecular Dynamics

Computational Cost calculating Molecular Dynamics

Including Computational Cost

The cut-off radius is primarily a numerical hyperparameter, considerations based on the radial distribution function are less relevant.

Temperature Concentration Phase Diagram

Ab-initio Thermodynamics

MPI for Sustainable Materials | Jan Janssen

S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth, M. Poul, M. Qatar, J. Janssen, M. Mrovec, J. Rohrer, K. Albe, J. Behler, R. Drautz and J. Neugebauer. npj Comput. Mater., 10, 261 (2024)

17

Temperature Concentration Phase Diagram

Ab-initio Thermodynamics

MPI for Sustainable Materials | Jan Janssen

S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth, M. Poul, M. Qatar, J. Janssen, M. Mrovec, J. Rohrer, K. Albe, J. Behler, R. Drautz and J. Neugebauer. npj Comput. Mater., 10, 261 (2024)

Temperature Concentration Phase Diagram

Ab-initio Thermodynamics

Defect Phase Diagram

Can we apply the same concepts to understand and design microstructure?

M. Slapakova, A. Zendegani, C.H. Liebscher, T. Hickel, J. Neugebauer, T. Hammerschmidt, A. Ormeci, J. Grin, G. Dehm, K.S. Kumar, F. Stein, Acta Mater 183, 362 (2020)

Defect Phase Diagram

Can we apply the same concepts to understand and design microstructure?

MPI for Sustainable Materials | Jan Janssen

M. Slapakova, A. Zendegani, C.H. Liebscher, T. Hickel, J. Neugebauer, T. Hammerschmidt, A. Ormeci, J. Grin, G. Dehm, K.S. Kumar, F. Stein, Acta Mater 183, 362 (2020)

Defect Phase Diagram

Can we apply the same concepts to understand and design microstructure?

Defect formation energy:

$$E_{\sigma}^{f} = F_{\sigma}^{DFT} - \sum_{i} n_{i}^{\sigma} \mu_{i}$$

σ - defect state
i - chemical species
n_i - number of species i
atoms

Defect formation energy:

 σ - defect state i - chemical species n_i - number of species i atoms

Theory (selected):

- > J.W. Gibbs 0
- Fowler & Guggenheim 1939
- ➤ Cahn 1982
- Frolov & Mishin 2015

▶

MPI for Sustainable Materials | Jan Janssen S. Korte-Kerzel, T. Hickel, L. Huber, D. Raabe, S. Sandlöbes-Haut, M. Todorova, and J. Neugebauer. Int. Mat. Rev., 67(1), 89–117. (2021) μ_{solute}

MPI for Sustainable Materials | Jan Janssen S. Korte-Kerzel, T. Hickel, L. Huber, D. Raabe, S. Sandlöbes-Haut, M. Todorova, and J. Neugebauer. Int. Mat. Rev., 67(1), 89-117. (2021)

Structural and

and J. Neugebauer. Int. Mat. Rev., 67(1), 89-117. (2021)

Structural and

Chemical Atomic

SFB

and J. Neugebauer. Int. Mat. Rev., 67(1), 89-117. (2021)

Structural and

Chemical Atomic

SFB

MPI for Sustainable Materials | Jan Janssen S. Korte-Kerzel, T. Hickel, L. Huber, D. Raabe, S. Sandlöbes-Haut, M. Todorova, and J. Neugebauer. Int. Mat. Rev., 67(1), 89-117. (2021)

Structural and

Workflows to Accelerate Materials Discovery

Inspiration from Functional Programming

Workflows to Accelerate Materials Discovery – Thank you

Inspiration from Functional Programming

