GRACE universal interatomic potential for materials discovery and design

Ralf Drautz ICAMS, Ruhr-Universität Bochum, Germany

> MoD-PMI 2025 IAEA Vienna, 27 May 2025

INTERDISCIPLINARY CENTRE FOR ADVANCED MATERIALS SIMULATION

 $(\bullet \land MS)$

ICAMS Team

- Yury Lysogorskiy
- Anton Bochkarev
- Matous Mrovec
- Minaam Qamar
- Matteo Rinaldi
- Yanyan Liang
- Eslam Ibrahim
- Sergei Starikov
- Thomas Hammerschmidt
- Mariano Forti

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb]	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am									

•••••

ICAMS

3

100 years of Quantum Mechanics

• Hamiltonian operator $\hat{H} = -\sum_{i} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{I} \frac{\hbar^{2}}{2M_{I}} \nabla_{I}^{2} - \sum_{iI} \frac{Z_{I}e^{2}}{|\mathbf{R}_{I} - \mathbf{x}_{i}|} + \sum_{ij}^{i \neq j} \frac{1}{2} \frac{e^{2}}{|\mathbf{x}_{i} - \mathbf{x}_{j}|} + \sum_{IJ}^{I \neq J} \frac{1}{2} \frac{Z_{I}Z_{J}e^{2}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|}$

kinetic energy of electrons kinetic energy of nuclei electron-nucleus interaction

electron-electron interaction nucleus-nucleus interaction

Schrödinger equation

$$E\Psi = \hat{H}\Psi$$

Erwin Schrödinger

→ Precise prediction of atomic interactions, at high computational cost

Direction from nearly 100 years ago

The mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

Paul Dirac

RUP

P.A.M. Dirac, Proc. R. Soc. Lond. (1929)

Density functional theory

• From many electrons to one effective electron

Walter Kohn

RUF

- The most cited concept in the physical sciences
- Widely used software (VASP, ...)
- Nearly universally applicable across the periodic table
 Accurate prediction of atomic interaction, moderate computational cost

Density functional theory

• From many electrons to one effective electron

7

Outline

8

1. Challenge: geometric and chemical complexity

Challenge: geometric complexity

• Challenge: complexity

Challenge: geometric complexity

• **Challenge:** complexity

• Solution: product representation

→ Linear scaling with number of neighbors

11

Challenge: chemical complexity

• Challenge: complexity for ~100 chemical elements

Challenge: chemical complexity

• Challenge: complexity for ~100 chemical elements

 V_{ABCD} $100^4 = 10^8$ entries

• Solution: tensor decomposition $V_{ABCD} = \sum_{k=1}^{K} \lambda_k c_A^{(k)} c_B^{(k)} c_C^{(k)} c_D^{(k)}$ $c_A^{(k)} \swarrow_{K \times 100 \text{ entries}}$ • Nearly independent of number of chemical elements

13

2. Atomic Cluster Expansion

Learning atomic energies

Atomic energies

 $E = \sum_{i} E_{i}$

Star graphs

node = atom edge = bond

root node = atom for which energy is computed

Atomic cluster expansion

 $\Phi_{\alpha \mathbf{v}} = \phi_{iv_1}(\mathbf{r}_{ji})\phi_{iv_2}(\mathbf{r}_{ki})\phi_{iv_3}(\mathbf{r}_{li})\phi_{iv_4}(\mathbf{r}_{mi})$

Atomic cluster expansion

• Basis functions are complete

$$E = \sum_{\alpha \mathbf{v}} J_{\alpha \mathbf{v}} \Phi_{\alpha \mathbf{v}}$$
expansion coefficients

Efficiency

Example: nanoindentation

Copper

Tungsten

Immel, Sutmann (2025)

RUB

3. Graph Atomic Cluster Expansion

Further possible graphs

• Connecting to 4 neighboring atoms

• Alternative to the same atoms

Graph topology

1 layer star graph

2 layers tree graph

Graph atomic cluster expansion (GRACE)

• Incorporate tree graphs in addition to star graphs

Graph atomic cluster expansion (GRACE)

Multi-atom basis function

$$\int \Phi_{\alpha \mathbf{v}}^*(\boldsymbol{\sigma}) \Phi_{\beta \mathbf{v}'}(\boldsymbol{\sigma}) \, d\boldsymbol{\sigma} = \delta_{\alpha \beta} \delta_{\mathbf{v} \mathbf{v}'} d\boldsymbol{\sigma}$$
orthonormal

$$\sum \Phi_{\alpha \mathbf{v}}^*(\boldsymbol{\sigma}) \Phi_{\alpha \mathbf{v}}(\boldsymbol{\sigma}') = \delta(\boldsymbol{\sigma} - \boldsymbol{\sigma}')$$

 $\alpha \mathbf{v}$

complete

Cluster expansion

$$E = \sum_{lpha \mathbf{v}} J_{lpha \mathbf{v}} \Phi_{lpha \mathbf{v}}$$
expansion coefficients

Bochkarev, Lysogorskiy, Drautz, Phys. Rev. X 14 (2024) 021036

25

RUB

Graph atomic cluster expansion (GRACE)

Multi-atom basis function

$$E = \sum_{\alpha \mathbf{v}} J_{\alpha \mathbf{v}} \Phi_{\alpha \mathbf{v}}$$
expansion coefficients

Bochkarev, Lysogorskiy, Drautz, Phys. Rev. X 14 (2024) 021036

26

RUB

Completeness and sensitivity

Competing graphs:

- Different sensitivity
- Different chemistry

Star (direct/local)

Tree (indirect/semilocal)

Incorporating several topologies for sensitivity and chemical interpretation \circ \wedge MS

Interactions from Quantum Mechanics

Schrödinger equation:

$$(\hat{H} - E)|\psi\rangle = 0$$

Green's function:

$$\hat{G}(E) = (E - \hat{H})^{-1}$$

$$\hat{G}(E) \approx a_0(E) + a_1(E)\hat{H} + a_2(E)\hat{H}^2 + a_3(E)\hat{H}^3 + \dots$$

Matrix elements with atom-centred basis:

$$\langle i lpha | \hat{H} | j eta
angle$$
 Typically short-ranged

$$\langle i\alpha | \hat{H}^2 | j\beta \rangle = \sum_{k\gamma} \langle i\alpha | \hat{H} | k\gamma \rangle \langle k\gamma | \hat{H} | j\beta \rangle \qquad i$$

$$\bullet \wedge \mathsf{MS}$$

Interactions from Quantum Mechanics

Schrödinger equation:

$$(\hat{H} - E)|\psi\rangle = 0$$

4. Efficient evaluation

ACE is a complete expansion

→ Transform local atomic environment to ACE and reduce reach of graph by one layer

 \rightarrow Repeat until graph is reduced

31

local ACE on layer 2

32

.

 $\left| \left(\bullet \right) \right|$

RUB

5. Foundational GRACE interatomic potential

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb]	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am]								

 $16 \wedge MS$

39

GRACE foundation model

- Train on (nearly) all elements of the periodic table
- Alexandria database (https://alexandria.icams.rub.de/)
- Materials project (https://next-gen.materialsproject.org/)
- OMAT24 dataset (about 118 million structures)
- → Tremendous improvements over the past 1-2 years

How can this work at all?

- Properties of chemical elements are strongly correlated
- Fewer than 10 dimensions required for all elements

Phase separation in AulrPtPdRh

Part of CRC 1625

 $\left| \bigcirc \land \right\rangle$

Atomic-scale understanding and design of multifunctional compositionally complex solid solution surfaces

> Ir Pt Pd Rh

Example: NbMoTaW

RUB

Grain boundary segregation in nickel

Grain boundary segregation in nickel

Grain boundary segregation in tungsten

Grain boundary segregation in tungsten

Burning cellulose

Matbench discovery leaderboard

- GRACE training less than 1000 GPU h
- GRACE about 10x faster than some competing models

Snapshot 27 May 2025

https://matbench-discovery.materialsproject.org/

Matbench Discovery

Full Test Set Unique Prototypes ()

10k Most Stable

	Complia	nt models		Non-complia	nt models	(i)	En
rgets	Params	Training Se	ət		RMSD ↓	K _{SRME} ↓	R
Se	30.2M	6.6M (113M)	OMa	t24+MPtri+sAlex	0.061	0.170	0

eSEN-30M-OAM	∞	6 Å	₿›îî E Ш	2025-03-17	EFS_{G}	30.2M	6.6M (113M) OMat24+MPtrj+sAlex	0.061	0.170	0.8
ORB v3		6 Å	≌«∕»ព∎ ш	2025-04-05	EFS_{G}	25.5M	6.47M (133M) MPtrj+Alex+OMat24	0.075	0.210	0.8
SevenNet-MF-ompa	匮	6 Å	₿‹›¤∎ ш	2025-03-13	EFS_{G}	25.7M	6.6M (113M) OMat24+sAlex+MPtrj	0.064	0.317	0.8
GRACE-2L-OAM	ICAMS	6 Å	₽‹›♫োш	2025-02-06	EFS_{G}	12.6M	6.6M (113M) OMat24+sAlex+MPtrj	0.067	0.294	0.8
eSEN-30M-MP	∞	6 Å	₿>१३ ш	2025-03-17	EFS_{G}	30.1M	146k (1.58M) MPtrj	0.075	0.340	0.8
MACE-MPA-0	変要	6 Å	₿‹/›╠ЕШ	2024-12-09	EFS_{G}	9.06M	3.37M (12M) MPtrj+sAlex	0.073	0.412	0.8
MatterSim v1 5M		5 Å	₿♪îî E Ш	2024-12-16	EFS_{G}	4.55M	17M MatterSim	0.073	0.574	0.8
DPA3-v2-OpenLAM		6 Å	⊘⊘カ∎ш	2025-03-14	EFS_G	7.02M	163M OpenLAM	0.068	0.687	0.8
GRACE-1L-OAM	ICAMS	6 Å	🖹 > 🕻 🗄 📊	2025-02-06	EFS_G	3.45M	6.6M (113M) OMat24+sAlex+MPtrj	0.072	0.516	0.8
SevenNet-I3i5	匮	5 Å	▤‹▷◧▤ш	2024-12-10	EFS_G	1.17M	146k (1.58M) MPtrj	0.085	0.550	0.7
MatRIS v0.5.0 MPtrj		6 Å	⊘ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2025-03-13	EFS_GM	5.83M	146k (1.58M) MPtrj	0.077	0.861	0.8
GRACE-2L-MPtrj	ICAMS	6 Å	≌୬ព∎ ⊑ ш	2024-11-21	EFS_{G}	15.3M	146k (1.58M) MPtrj	0.090	0.525	0.7
DPA3-v2-MPtrj	AISI TORYBRIAN	6 Å	⊘⊘カ∎ш	2025-03-14	EFS_{G}	4.92M	146k (1.58M) MPtrj	0.082	0.959	0.8
MACE-MP-0	5 5 5	6 Å	▤‹▷♫ো ш	2023-07-14	EFS_G	4.69M	146k (1.58M) MPtrj	0.091	0.647	0.6
AlphaNet-MPTrj	۲	6 Å	🖹 > 🕅 🗉 📊	2025-03-05	EFS_G	16.2M	146k (1.58M) MPtrj	0.107	1.310	0.7
eqV2 M	∞	12 Å	₿‹/›♬₤ш	2024-10-18	EFS _D	86.6M	3.37M (102M) OMat24+MPtrj	0.069	1.771	0.8
ORB v2		10 Å	Ê♪ît E 🔟	2024-10-11	EFS_D	25.2M	3.25M (32.1M) MPtrj+Alex	0.097	1.732	0.8
eqV2 S DeNS	∞	12 Å	₿‹/›╠₤ш	2024-10-18	EFS_D	31.2M	146k (1.58M) MPtrj	0.076	1.676	0.7
ORB v2 MPtrj		10 Å	₿>\$\$ €	2024-10-14	EFS_D	25.2M	146k (1.58M) MPtrj	0.101	1.725	0.7
M3GNet	¥	5 Å	₿ ♪ î 1 E LL	2022-09-20	EFS _G	228k	62.8k (188k) MPF	0.112	1.412	0.5
CHGNet	Berkeley	5 Å	₿«≻₥∎ ш	2023-03-03	EFS _G M	413k	146k (1.58M) MPtrj	0.095	1.717	0.6
GNoME	6	5 Å	lada ta	2024-02-03	EFa	16.2M	6M (89M) GNoME	n/a	n/a	0.7

Date Added Ta

Click on column headers to sort table rows

Mode

Org r_{cut} Links

Conclusions

- Foundational GRACE interatomic potential
- Fast and accurate
- Exhaustive databases available, but still somewhat limited

• Models, code, tutorials: https://gracemaker.readthedocs.io

