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100 years of Quantum Mechanics

• Hamiltonian operator

• Schrödinger equation

➔ Precise prediction of atomic interactions, at high computational cost

nucleus-nucleus 

interaction

kinetic energy 

of nuclei

electron-nucleus 

interaction

electron-electron 

interaction

kinetic energy 

of electrons

Erwin Schrödinger
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Direction from nearly 100 years ago

The mathematical theory of a large part of physics and 

the whole of chemistry are thus completely known, and 

the difficulty is only that the exact application of these 

laws leads to equations much too complicated to be 

soluble.
 

It therefore becomes desirable that approximate 

practical methods of applying quantum mechanics 

should be developed, which can lead to an explanation 

of the main features of complex atomic systems without 
too much computation. 

Paul Dirac

P.A.M. Dirac, Proc. R. Soc. Lond. (1929) 
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Density functional theory

• From many electrons to one effective electron

Walter Kohn

Hartree potential: 

electrostatic interaction

between electrons

kinetic energy 

of electron

interaction 

with nuclei

Exchange-Correlation potential: 

approximation required

• The most cited concept in the physical sciences

• Widely used software (VASP, …)

• Nearly universally applicable across the periodic table

➔ Accurate prediction of atomic interaction, moderate computational cost
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Density functional theory

• From many electrons to one effective electron

Walter Kohn

Hartree potential: 

electrostatic interaction

between electrons

kinetic energy 

of electron

interaction 

with nuclei

Exchange-Correlation potential: 

approximation required

• The most cited concept in the physical sciences

• Widely used, robust software (VASP, …)

• Nearly universally applicable across the periodic table

➔ Accurate prediction of atomic interaction, moderate computational cost
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1. Challenge: geometric and chemical complexity
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• Challenge: complexity
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Challenge: geometric complexity 

body

order
number of

neighbors



• Challenge: complexity

• Solution: product representation
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➔ Linear scaling with number of neighbors

Challenge: geometric complexity 

operations operations

body

order
number of

neighbors
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Challenge: chemical complexity 

• Challenge: complexity for ~100 

chemical elements

entries
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➔ Nearly independent of number of chemical elements

Challenge: chemical complexity 

• Challenge: complexity for ~100 

chemical elements

• Solution: tensor decomposition

entries

entries



14

2. Atomic Cluster Expansion
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Learning atomic energies 

Atomic energies
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Star graphs 

edge = bond

root node = atom for which energy is computed

node = atom
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Atomic cluster expansion 

• Basis functions on graphs
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Atomic cluster expansion

• Basis functions are complete

iexpansion coefficients

Drautz, PRB 99 (2019) 014104
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Efficiency

Reference: Zuo, et al, J. Phys. Chem. A 124, 731 (2020) Y. Lysogorskiy, et al, npj Comput. Mater. (2021)
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Example: nanoindentation

~ several millions of atoms for several millions of time steps

TungstenCopper

Immel, Sutmann (2025) 
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3. Graph Atomic Cluster Expansion
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Further possible graphs 

• Alternative to the same atoms• Connecting to 4 neighboring atoms
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Graph topology 

2 layers tree graph1 layer star graph
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Graph atomic cluster expansion (GRACE) 

• Incorporate tree graphs in addition to star graphs
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Graph atomic cluster expansion (GRACE)

Multi-atom basis function

Cluster expansion

orthonormal

complete

expansion coefficients

Bochkarev, Lysogorskiy, Drautz, Phys. Rev. X 14 (2024) 021036 
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Graph atomic cluster expansion (GRACE)

Multi-atom basis function

Cluster expansion

orthonormal

complete

expansion coefficients

number of neighbors

fast ✓ 

high body-order ✓ 

leading order

Bochkarev, Lysogorskiy, Drautz, Phys. Rev. X 14 (2024) 021036 



Incorporating several topologies for sensitivity and chemical interpretation
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Completeness and sensitivity

Competing graphs: 

• Different sensitivity

• Different chemistry

Tree (indirect/semilocal)Star (direct/local)



Schrödinger equation:

Green’s function:

Matrix elements with atom-centred basis:
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Interactions from Quantum Mechanics

Typically short-ranged

i k

j

i

j



Schrödinger equation:

Green’s function:

Matrix elements with atom-centred basis:
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Interactions from Quantum Mechanics

Typically short-ranged

i k

j

i

j
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4. Efficient evaluation
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Efficient evaluation of GRACE

ACE is a complete expansion

➔ Transform local atomic 

environment to ACE and reduce 

reach of graph by one layer

➔ Repeat until graph is reduced
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Recursive evaluation

local ACE on layer 2
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Recursive evaluation

local ACE on layer 2

layer 2 dressed with ACE
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Recursive evaluation

local ACE on layer 2

layer 2 dressed with ACE

local ACE on layer 1
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Recursive evaluation

layer 1 dressed with ACE

local ACE on layer 2

layer 2 dressed with ACE

local ACE on layer 1
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Recursive evaluation

local ACE on layer 0

layer 1 dressed with ACE

local ACE on layer 2

layer 2 dressed with ACE

local ACE on layer 1
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Recursive evaluation

local ACE on layer 0

layer 1 dressed with ACE

local ACE on layer 2

layer 2 dressed with ACE

local ACE on layer 1
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Recursive evaluation

local ACE on layer 0

layer 1 dressed with ACE

local ACE on layer 2

layer 2 dressed with ACE

local ACE on layer 1

• Recursive evaluation incorporates all 

subgraphs

• Recursive evaluation may be 
understood as message passing

➔ Link to message passing

(MACE, NequIP, …)

and fast multipole method 

Batzner et al, Nat. Comm. (2022), Batatia et al, NeurIPS (2022), Multi ACE, Batatia et al, Nat. Mach. Intel. (2025)
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5. Foundational GRACE interatomic potential
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GRACE foundation model

Simple_Pe
riodic_Tabl
e_Chart-
blocks.svg
.png

• Train on (nearly) all elements of the periodic table 

• Alexandria database (https://alexandria.icams.rub.de/)

• Materials project (https://next-gen.materialsproject.org/)

• OMAT24 dataset (about 118 million structures)

➔ Tremendous improvements over the past 1-2 years

How can this work at all?

• Properties of chemical elements are strongly correlated

• Fewer than 10 dimensions required for all elements

https://alexandria.icams.rub.de/
https://next-gen.materialsproject.org/
https://next-gen.materialsproject.org/
https://next-gen.materialsproject.org/
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Phase separation in AuIrPtPdRh 

Part of CRC 1625

Atomic-scale understanding 

and design of multifunctional 

compositionally complex 

solid solution surfaces
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Example: NbMoTaW 



Grain boundary segregation in nickel 
Part of CRC 1394

Structural and chemical 

atomic complexity - from 

defect phase diagrams 

to material properties



Grain boundary segregation in nickel 



Grain boundary segregation in tungsten 



Grain boundary segregation in tungsten 



Burning cellulose 



Matbench 
discovery 

leaderboard

https://matbench-discovery.materialsproject.org/

Snapshot 27 May 2025

• GRACE training less 

than 1000 GPU h

• GRACE about 10x 

faster than some 
competing models
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Conclusions

• Foundational GRACE interatomic potential

• Fast and accurate

• Exhaustive databases available, but still somewhat limited

• Models, code, tutorials: https://gracemaker.readthedocs.io

E =         +                 +                         +...
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