

Adsorption and in-diffusion of Hydrogen at metal and metal oxide surfaces

Katsuyuki Fukutani

Institute of Industrial Science, University of Tokyo

Advanced Science Research Center, Japan Atomic Energy Agency

Co-workers: M. Irfandi, T. Ozawa, N. Nagatsuka, S.S. Das M. Wilde, K. Kato

Outline

- 1. Introduction: Interaction of Hydrogen with materials
- 2. Experimental methods

Various hydrogen beams

"Surface science / thin film point of view"

- Nuclear reaction analysis: H depth profiling & site analysis
- 3. Results and Discussion
 - Metal oxides

Perovskite: $SrTiO_3$, High-entropy alloy, $ReNiO_3$ TiO₂: rutile vs. anatase

• Metal: metastable hydrides of Pd and Pt

4. Summary

Interaction of Hydrogen with materials

 \succ Hydrogen is a clean energy (no CO₂ emission)

 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O + Q(286 \text{ kJ/mol})$

Chem. Rec. 17, 233 (2017). Catal. Lett. 152, 1583 (2022).

- ✓ Hydrogeneration / de-hydrogenation reactions at surfaces
- ✓ Hydrogen in-diffusion & hydride formation

- Control of physical properties by hydrogen
 - Switchable mirrors: YHx
 - Superconductivity: LaH_x $(Tc \sim 240 \text{ K})$

E. Snider et al., Nature 586, 373 (2020)

Hydrogen beam

Nuclear Reaction Analysis

¹⁵N+¹H → ¹²C+ α + γ (4.43MeV) Resonance at $E_R = 6.385$ MeV Resonance width= 1.8 keV

Depth profiling

M. Wilde & KF, Surf. Sci. Rep. 69 (2014) 196.

H storage in Pd

NRA depth profile

Nuclear Reaction Analysis

M. Wilde & KF, Surf. Sci. Rep. 69 (2014) 196.

Analysis of H location: TiH_{2-x}

Outline

1. Introduction: Interaction of Hydrogen with materials

2. Experimental methods

Various hydrogen beams

Nuclear reaction analysis: H depth profiling & site analysis

- 3. Results and Discussion
 - Metal oxides

Perovskite: SrTiO₃, High-entropy alloy, ReNiO₃ TiO₂: rutile vs. anatase

• Metal: metastable hydrides of Pd and Pt

4. Summary

Perovskite metal oxide: SrTiO₃ (001)

S. Ogawa et al., PRB.96, 085303 (2017)

ReNiO₃ (Re=Sm, Nd, La)

High-entropy perovskite oxide (HEPO)

Pulsed laser deposition on $SrTiO_3(001)$

T=873 K, $P(O_2)=0.13$ Pa Thickness=90 nm

-MS npositional a	nalysis) A	3 elements
Ca	Sr	Ba
0.305 ± 0.008	0.111 ± 0.011	0.097 ± 0.008
	В	site
Si	Ti	Cr
Not detected	0.162 ± 0.038	0.028 ± 0.005
Со	Ni	Ge
0.022 ± 0.005	0.021 ± 0.006	0.018 ± 0.002
Ce	Hf	
0.014 ± 0.005	0.013 ± 0.009	11 1
Mn	Fe	11 elemer
0.025 ± 0.005	0.045 ± 0.006	
Zr	Sn	
0.116 ± 0.022	0.021 ± 0.003	

Atomic-H dosage to HEPO film

HEP(

H-HEPO

T. Ozawa et al., J. Vac. Sci. Technol. A 42, 023402 (2024)

Atomic H dosage to TiO_2

H Depth profile: diffusion analysis in TiO₂

DFT: energy diagram

Hydrogen ion irradiation at low T

Pd: H₂ gas exposure and ion irradiation

H ion irradiation of 0.5-2 keV at ~50 K Pd(100) crystal

Partial occupation of metastable T site

Temperature dependence of hopping rate

H/Pd : ~0.14

① T>80 K: Arrhenius Thermal over-barrier

③ T<30 K: nearly T-indep

Quantum tunneling

✓ Dressed electron electron-proton coupling

2 80 K>T>30 K: slightly T-dependent

Phonon-assisted tunneling

T. Ozawa et al., JVSS 62 (2019) 492; submitted.

Summary

Hydrogen (atom and ion) interaction with metal oxides and metals Characterization by NRA

1. Metal oxides

SrTiO₃: surface adsorption ReNiO₃: adsorption + in-diffusion HEPO: adsorption + in-diffusion insulator \rightarrow metal metal \rightarrow Insulator remain insulating

 TiO_2 : near-surface accumulation by H ion irradiation faster diffusion in anatase than rutile due to polaron effects

2. Metals

Metastable hydride formation by H ion irradiation, Pd: T(50%) and O(50%) site occupation Pt: mostly stable T site occupation

Atomic H dose at high T

水素吸蔵材料:本当に吸蔵しているか?

(S. Ogura et al., J. Phys. Chem. C 117, 9366 (2013))

(JPCC 117, 9366 (2013), JPCC 121, 3373 (2017); PNAS 115, 7896 (2018))

H diffusion: classical to quantum crossover

熱拡散
$$v_0 \exp(-\frac{E_a}{kT})$$

振動励起トンネル拡散 $v_1 \exp(-\frac{E_1}{kT})$
トンネル拡散 $v_3 T^{\alpha}$

(T. Ozawa et al., J. Phys. Chem. Solids 185, 111741 (2023))

Effects of O site occupation

Isotope effect: effects of ZPE

D exclusively occupies the T site because of the zero-point vibration effect.