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Introduction
- Needs of accurate data of hydrogen isotopes-

v’ Efficient use of hydrogen isotopes (Hls), particularly tritium (T), is essential for
safe/economic/sustainable operation of fusion reactors.
—> Accurate data on Hls, such as diffusivity (D) and solubility (S) are needed.

v' Experiment should be the first choice; however, there are intrinsic limitations/difficulties:
v H lattice diffusivity at low temperatures.
v Tritium data
v’ Sticking coefficient of low-energy hydrogen (<100 eV).
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Introduction
- Limitations of DFT and classical MD-

v Atomistic simulations can be an alternative.
v" Quantum mechanics (e.g., DFT) — for high accuracy
v' Empirical potential models (e.g., classical MD) — for computational efficiency

v’ Accuracy-efficiency trade-offs limit applicability, especially in engineering.
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Introduction
- What machine learning potentials can do?-

v' Machine-learning potentials (MLPs), trained on high-accuracy QM data, have substantially
improved the accuracy—efficiency trade-off.

v" MD simulations using MLPs (ML-MD) enables virtual experiments, minimizing the need
for experimental validation.
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< Application of advanced theoretical methods for accurate property calculations >

(Topic-1) Accurate simulations of hydrogen diffusivity in W, including isotope effects.
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< Accurate large-scale simulations, i.e., virtual experiments >

(Topic-2) Simulations of PMI-related surface processes in W.

» “Virtual experiments” on

. hydrogen implantation
> Ad t by DFT -
SOrption Energy by » Evaluation of kinetic

» Migration barrier by DFT
parameters
\§ J

> Classical MD

v" We adopt the Moment Tensor Potential (MTP), as it can achieve high computational
efficiency with satisfactory accuracy.
v DFT by VASP; classical MD by LAMMPS; Pl methods by PIMD code.

*[Moment Tensor Potential (MTP)] A.V. Shapeev, Multiscale Model. Simul. 14 (2016) 1153.
*[ML potential comparison] Y. Zuo et al., J. Phys. Chem. A 124 (2020) 731.



(1) HI diffusivity calculations
- Path-integral methods for nuclear quantum effects-

» Classical MD
» DFT + transition state theory

9

» Quantum dynamics

v" MLPs allow to use path-integral (Pl) methods to deal with nuclear quantum effects.
v" If MLPs are as accurate as experiment, we can achieve accurate properties.
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(1) HI diffusivity calculations
- H diffusivity in bcc-W: comparison with experiments-
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*[Experiments] Frauenfelder, J. Vac. Sci. Technol. 6 (1969) 388; G. Holzner et al., Phys. Scr. T171 (2020)
014034; T. Otsuka et al., Phys. Scr. T138 (2009) 014052.
*[Simulations] H. Kwon et I.,, M. Shiga, H. Kimizuka, T. Oda, Acta Mater. 247 (2023) 118739.



(1) HI diffusivity calculations
- Isotope effects: H/D/T diffusivity in bcc-W -

v' Good agreement with experiment in H/D isotope effect.
v" Not square root of mass (1.44) but ~1.26 even in the classical regime (i.e., high temp.).

v’ Significant deviation at low temperatures (< Tyq,) due to NQEs.
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(1) HI diffusivity calculations
- for engineering applications -

v' At high temperatures (> T,,), the isotope effect model using
inverse isotope masses is fairly accurate (~¥20% error in bcc).

v" For W and Fe, we have derived equations for H/D/T diffusivity

for a wide temperature range.
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(2) HI implantation behavior
- MLP extension for surface processes-

v" ML potentials were retrained to simulate

the behavior of implanted HI atoms.

v" H solution/adsorption.

v H diffusion on surfaces.

v" H-V interaction.

v" H, absorption.

v’ Short range collision (<100 eV).
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*S. Yang, et al., (2025) [http://dx.doi.org/10.2139/ssrn.5115095]




(2) HI implantation behavior
- Competition between adsorption/absorption/reflection-

ML-MD of H implantation to W(110) at 0.1-100 eV

v At low energies, an implanted H cannot escape from the surface. -> adsorption
v At high energies, an implanted H cannot come back to the surface. -> absorption

v" At intermediate energies -> reflection

—e— Sticking
—&— Adsorption
—&— Absorption .

1.0 | 100
| §
» Sticking coefficient S — o8
= 0.
S=A+P=1-R %
A: adsorption prob. E 0.6 -
P: absorption prob. =
R: reflection prob. 2 4
I
o
0.2
0.0

—A

*S. Yang, et al., (2025) [http://dx.doi.org/10.2139/ssrn.5115095]

I " I . I

20 30 40
Incident energy (eV)

T

50




(2) HI implantation behavior
- Electronic stopping, comparison with BCA and empirical MD-

v’ Electronic stopping (ES) effects are significant.

v" Classical MD using the bond order potentials (BOPs) are accurate at high incident
energies, but not at low.

v" BCA (by SDTrimSP) needs an accurate surface binding energy mode (“isbv”).
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(2) HI implantation behavior
- Isotope effects of sticking coefficient-

v’ Isotope effects of nuclear process and electronic process are cancelled out, leaving
only negligible isotope effects.
v" Nuclear: Larger energy loss with a heavier isotope.
v’ Electronic: Larger energy loss with a lighter isotope.
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(2) HI implantation behavior
- Effects of surface coverage (SC)-

ML-MD of surface coverage effects at 0.1-100 eV

v" The surface coverage is likely to reduce SC due to abstraction & blocking.
v" However, SC is less sensitive to the surface coverage; even increases.
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*[left figure] Z.A. Piazza et al., J. Phys. Chem. C 125 (2021) 16086.
*[right figure] S. Yang, et al., (2025) [http://dx.doi.org/10.2139/ssrn.5115095]



(2) HI implantation behaviors by ML-MD
- Effects of surface coverage-

v’ Abstraction probability is not very high.
v’ Reflection probability decreases due to an additional nuclear stopping with
preexisting surface H atoms.
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(2) HI implantation behavior

imulations-
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Summary and discussion

ML-MD can evaluate material properties that cannot be directly measured by
experiments ( H diffusivity, sticking coefficients) at DFT accuracy.

v (Question) Can we rely on “virtual experiments” using ML-MD?
v" Depending on DFT accuracy, which is often not equal to experimental accuracy.
v In our experiences,
v' Diffusivity: Overestimation with Mo, V / Underestimation with Fe (a factor of 2-3).
v" Solubility: Overestimation (up to 0.2 eV) with W, Fe.
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v" For simulations of complex phenomena, careful assessment is needed. (but how?)
v’ Preparing benchmark cases for complex phenomena
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