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Numerical modelling of underexplored edge plasma cases
in tokamaks using the SOLPS-ITER code
F. Mombelli1, A. Mastrogirolamo1, E. Tonello2, O. Février2, A. Uccello3, A. Zito4, A. Hakola5, B. Labit2, F. Subba6, M. Passoni1,3, 
the TCV teama, the ASDEX Upgrade teamb and the EUROfusion Tokamak Exploitation teamc

L-mode deuterium discharges with fixed divertor geometry and opposite upper triangularity: lower 
divertor cooling and harder detachment in Negative Triangularity (NT) compared to Positive 
Triangularity (PT), but identical upstream conditions.
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Introduction

➲ Boundary plasma and Scrape-Off Layer (SOL) play a key role in controlling particle and heat fluxes 
at the divertors and impurity accumulation, crucial for future fusion reactors.

➲ Numerical tools to support interpretation and complement experimental results, but also to 
investigate experimentally inaccessible configurations and design future scenarios.

➲ In this work, numerical investigation of fusion-relevant boundary plasma scenarios experimentally 
implemented at TCV and ASDEX Upgrade facilities, different both for magnetic geometry and 
plasma species.

➲ Mesh based on magnetic equilibrium
➲ Cross-field transport modelled as diffusive
➲ Applicable to tokamak and linear geometries

➲ Specification of BC, gas puff and pumping
➲ Possibility to turn on drifts and currents
➲ Possible coupling with erosion codes

2. What assumptions about the transport regimes need to be introduced?

1. Can the experimental differences be justified only by the different magnetic geometry?
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3. Simulation of a separatrix electron density scan, to investigate the neutral pressure evolution.
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Helium H-mode (+ H-based NBI) plasma discharge performed to investigate He Plasma Material 
Interaction (PMI) on W-based samples. The objective is to model the inter-ELM plasma parameters 
and analyze the fluxes reaching the outer divertor target for eventual erosion modelling (ERO2.0).Ob
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1. Modelling of an H-mode pure He plasma
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2. Inclusion of H from NBI in experimental proportions (nHe/ne ≈ 45% @ core border)
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3. Inclusion of N as a proxy for radiating impurities leads to lower Te @ OT
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Good agreement with experimental data, yet overestimation of Te @ OT. 
He+ and He++ fluxes at the Outer Strike Point are comparable in magnitude

Inclusion of radiating impurities (N taken as a proxy) may contribute to the decrease of Te @ OT.

He+ and H+ associated with NBI accumulating in the PFR and dominating the flux to OT there.

No difference in the plasma profiles at fixed transport coefficients for the two configurations.

Lower neutral divertor pressure in NT coherent with experimental data. Neutral pressure distribution 
interpreted considering the balance between recycling and ionization processes.

Suppressed particle diffusivity in NT. Attached ionization sources in NT, partial detachment in PT.


