
Motivations and aims
➢ Heavier non-hydrogenic plasma species, e.g. helium (He) ash, argon (Ar) seeding, may influence plasma-wall 

interaction (PWI)
➢ Linear plasma devices (LPDs) are used to perform dedicated PWI experiments in a controlled environment, to 

complement the more complex tokamak experiments
➢ Modelling PWI processes allows a deeper understanding of these phenomena and offers support for experiment 

interpretation
➢ Global SOLPS-ITER [1] and ERO2.0 [2] coupling allows self-consistent simulation of erosion and impurity transport

processes, both in tokamaks and in linear devices [3]

Motivations

➢ Present an overview of erosion modelling activities with non-hydrogenic plasmas in different environments
➢ Design an erosion and migration experiment in the GyM linear device [4] and validate ERO2.0 simulations with 

experimental results
➢ Model outer divertor erosion in ASDEX Upgrade H-mode He plasma discharges [5]

Aims
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ERO2.0 workflow

1. Erosion 
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generation and 
transport simulation

• 3D Monte Carlo code for erosion and impurity migration simulation
• Global and self-consistent description in whole machine volume
• Test particles approximation: traced impurities do not influence background 

plasma parameters

ASDEX Upgrade He campaign

Inputs:

• Cylindrical vacuum chamber with axial B field, ion flux ~ CX 
neutrals on ITER first wall

• PWI experiments carried out by exposing samples of interest to 
the plasma by means of a dedicated sample-holder

• Si substrates (catchers) mounted on lateral wall to catch 
sputtered impurities

The GyM linear device

B field 0.13 T Ion flux 1021 ions m-2 s-1

Working pressure 10-3 Pa Ion fluence 1025 ions m-2 (~7h)

Electron density <1017 m-3 Diameter 0.25 m
Electron temperature <15 eV Length 2.1 m

Ion temperature 0.1 eV Working gases H2, D2, N2, He, 
Ar, mixtures

Si catchers

➢ Linear device with lowly ionized plasma and stainless steel vessel
➢ PWI experiments with ion fluxes ~ CX neutrals on ITER first wall

Catchers
• Introduced for modelling validation purposes
• Installed in proximity of lateral wall, able to 

rotate around the screw
• Aimed at providing measurable deposition 

layers from sputtered impurities
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➢2022 He plasma campaign aimed at 
observing fuzz formation on W divertor tiles

➢14  consecutive discharges: 8 H-mode and 
6 L-mode

➢H-mode and L-mode strike points 
separated by few centimeters to distinguish 
divertor regions

➢150-250 nm erosion after 3.4x1024 m-2 

fluence observed on polished W samples 
near the H-mode OSP [5]
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Background plasma to simulate 
inter-ELM phase of H-mode 
discharges produced with 
SOLPS-ITER.
 Benchmarked with Langmuir 
probes measurements at outer 
midplane (OMP) and outer 
strike point (OSP)

• Used to expose samples
• Negatively Biased to tune ion 

impact energy

• Typical exposed material: fusion 
relevant W (1x1 cm2) mounted in a 
Mo frame. Other configurations 
are possible, i.e. different samples 
material or larger sample without 
mask (~ 3x4 cm2)

Sample-holder

Samples Mo mask

37 mm

(z~-0.15)

1 2 3 4 5 6 7

Experiment designArgon plasma
Ar background plasma from SOLPS-ITER, matching experimental 
radial profile of plasma parameters, measured with Langmuir probes 
at 3 axial locations 

Ar plasma mostly neutral
Ar+ is the dominant ionization stage, 3 orders of magnitude 
higher density than Ar2+ and other charge states

Ar density [m-3]
Neutral Ar+ Ar++

Experiment design and ERO2.0 validation in GyM
Experimental  results

• Cr coatings deposited on Si, exposed at 70 V
• Total 3 um thickness eroded

Visible Cr 
deposition on 
catchers, with 
bare Si on 
shadowed 
surface regions

~30 nm deposited layer and ~70 ug mass gain 
expected on catchers according to ERO2.0 
predictions

Catcher in axial position 4

➢ Near 50%/50% He+/He2+ at the 
strike point

➢ Mostly He2+ farther in the SOL 
(see Fabio Mombelli et al. poster)

ASDEX Upgrade erosion modelling
Conclusions

Perspectives

➢ PWI experiments with non-hydrogenic plasmas were modelled through SOLPS-ITER 
and ERO2.0, highlighting the different role of higher charge states in a linear device 
and in a tokamak

ERO2.0 simulations to determine:
➢ Catcher location and orientation
➢ Material and size of samples to 

be exposed

• Highest deposition 
found closer to SH, 
with catchers 
pointing towards it

• Large Cr sample 
chosen because of 
its higher erosion 
rate, hence higher 
deposition rate on 
catchers

“Ring-shaped” modelling of catchers
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Conclusions and perspectives

Measured mass gain: ~50 ug
Comparable with ERO2.0 predicitions

First EDX analysis 
confirms superficial Cr 
content, to be further 
investigated with other 
techniques to estimate 
layer thickness

Element Atomic %
C 11.27
O 3.44
Si 69.38
Cr 15.90

20 mm
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GyM
➢ Large Cr samples and catcher 

installation near the SH were chosen 
through preliminary ERO2.0 modelling

➢ First experimental measures in good 
agreement with ERO2.0 predictions

ASDEX Upgrade
➢ He H-mode discharges successfully

modelled with SOLPS-ITER
➢ Estimated OD erosion in inter-ELM 

phase and studied the influence of ion
flux charge state composition

GyM
➢ Further analysis on deposited layers to 

determine thickness and refine the 
comparison with ERO2.0 modelling

➢ Future use of catchers as backup 
diagnostics in GyM PWI experiments

ASDEX Upgrade
➢ Investigate the impact of foreign light 

impurities on erosion
➢ Develop a strategy to model intra-ELM 

erosion and improve the comparison 
with experimental erosion measures

Influence of He+/He2+ ratio on 
erosion given a fixed Jsat [6]

At low Te
fHe2+
Erosion

At high Te
fHe2+
Erosion

Outer divertor erosion in inter-ELM phase estimated for different He ions modelling:
• Full He2+ plasma
• Full He2+ ion fluxes at divertor with Zeff distribution in the volume
• SOLPS-ITER distribution of ion fluxes with Zeff in the volume

➢ Net erosion peak observed in proximity of max Te
➢ Zeff distribution affects impurity transport, slightly increasing erosion
➢ Real fluxes distribution has minor influence on erosion, i.e. assuming 

a full He2+ flux is a good approximation. Possibly because Te is close 
to threshold value

Threshold Te
fHe2+
Erosion         

OSP

Te max

ERO2.0 results
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