Effects of Helium in Tungsten Studied by Positron Annihilation Spectroscopy

Vassily Vadimovitch Burwitz^{1,2,3*}, Annemarie Kärcher^{1,3}, Maik Butterling⁴, Eric Hirschmann⁴, Emma Huntley², Adrian Langrehr¹, Maciej Oskar Liedke⁴, Lucian Mathes^{1,2}, Thomas Schwarz-Selinger³, Christoph Springl^{1,2}, Monia Vadrucci^{5,6}, Andreas Wagner⁴, Christoph Hugenschmid²

¹TU München, School of Natural Sciences, Physikdepartment, ²TU München, Heinz Maier-Leibnitz Zentrum, ³Max-Planck-Institut für Plasmaphysik, Garching bei München, ⁴Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, ⁵ENEA, Development of Particle Accelerators and Medical Applications, Frascati (RM), Italy, ⁶Italian Space Agency, Science and Innovation Directorate, Rome

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK

MOTIVATION

- Helium incident on divertor of fusion reactor:
 - Energy: 20 to 100 eV
- Flux: 1×10^{23} to 1×10^{24} He/m²/s [Yang and Fan 2022, Plasma Sci. Technol.]

ATOMIC-LEVEL PROCESSES OF HELIUM IN W

As predicted by DFT [Boisse 2014, J. Mater. Res.] & MD [Pentecoste 2016, J. Nucl. Mater.].

SELF TRAPPING

- Known macroscopic effects:
 - Embrittlement
 - Blistering
 - Flaking

POSITRON IN SOLID

[Hugenschmidt 2016, Surf. Sci. Rep.], modified.

- 1. Thermalizes (by scattering).
- 2. Diffuses (if not trapped in open-volume defect).
- 3. Annihilates with electron.

DBS MEASUREMENTS

Helium in "defect free" W

Helium in W pre-irradiated with $4.5 \,\text{MeV}$ electrons.

These measurements are two examples of a larger set. He flux is $1.0 \times 10^{17} \text{ He}/\text{m}^2/\text{s}$.

ANNIHILATION

PALS MEASUREMENTS

DBS

SAMPLES

- Tungsten
- Monocrystalline (111)
- Cut by electrode discharge milling
- Polished (mechanically and electrochemically)
- Annealed (in vacuum at > 2300 K for 3 min)
 - \rightarrow "defect free" as measured by PAS.

HELIUM IRRADIATION

Low-temperature plasma device [Manhard 2017, Nucl. Fusion]

• Samples at room temperature

This measurement (of W only) is an example representing a larger set of measurements.

Doppler-broadening Spectroscopy (DBS): Sensitve to defect concentration.

HELIUM IN "DEFECT FREE" W

PALS

- Energy: 50 eV (Below kinetic damage threshold)
- Flux: $1.0 \times 10^{17} \,\text{He}/\text{m}^2/\text{s to } 1.0 \times 10^{19} \,\text{He}/\text{m}^2/\text{s}$
- Fluence: $1.8 \times 10^{20} \,\text{He}/\text{m}^2$ to $8.9 \times 10^{21} \,\text{He}/\text{m}^2$

Input: conventional and depth-resolved DBS and PALS.

⁻orschungsgemeinschaft

German Research Foundation

Funded by

SUMMARY

- In "defect free" W: Parameter space limits for:
 - Clustering
 - Self trapping
- In predamaged W: No trap mutation observed.

OUTLOOK

- Improve theory for PAS data analysis.
- Simulations of relevant Helium irradiation ²⁰¹

regimes (kinetic Monte Carlo, compare [Z. Yang 2017, FST]).

This work was part of DFG project: 429845086

14 16 18 20 22 24 26 t/ns

Positron Annihilation Lifetime Spectroscopy (PALS):

Sensitve to defect type and concentration.

 $N\left(t
ight) = \sum_{i=0}^{k} rac{I_{i}}{ au_{i}} \exp\left(-rac{t}{ au_{i}}
ight)$

(3)

k number of annihilation sites τ lifetime

I intensity