Machine-learning force fields for hydrogen and vacancy complex in tungsten Yuki NOGUCHI¹ (noguchi.yuki@nifs.ac.jp), Daiji KATO^{2,1}

1. Kyushu Univ. 2. National Institute for Fusion Science

Abstract

• To investigate hydrogen-vacancy (H-V) interactions in tungsten (W), we constructed W-H-V Machine Learning Force Fields (MLFF) based on SOAP descriptors and Bayesian linear regression (on-the-fly ML method).

• The present MLFF can predict formation energies and hydrogen binding energies calculated by DFT with fair accuracy.

The present studies showed that hydrogen trapping stabilizes vacancy clustering.

Background

• Tungsten is a primary candidate as a plasma-facing material in the divertor (Fig. 1).

- However, the neutron irradiation experiment showed that the formation of defect structures in tungsten increased deuterium (D) retention (Fig. 2).
- H–V interactions in tungsten have been investigated through molecular simulations, including density functional theory (DFT) and molecular dynamics (MD).

farget (IVT and OVT)

T. Hirai +, NME, 9 (2016)

0.2 -

Fig. 2: Depth profile of D in non-irradiated and n-irradiated W specimens after exposure to D plasma at 773K

Machine Learning Methods – on-the-fly machine learning *R. Jinnouchi +, PRB (2019)

- MLFF, a non-parametric approach, has recently emerged as a promising alternative to empirical potentials.
- On-the-fly machine learning* efficiently samples DFT data of various atomic configurations and modifies MLFFs sequentially using **Bayesian linear** regression with kernel functions represented by SOAP descriptors. The DFT calculation is performed only for atomic configurations with large uncertainty in the Bayesian inference.
- The on-the-fly MLFF is implemented in the first-principles code VASP. We have constructed an MLFF from 1291 W-H-V structures.

Result

• The present DFT-PBE calculations are consistent with previously reported DFT results (Table 1).

binding energies of a single H atom to vacancies by DFT-PB		
configuration	Formation energy	H binding energy
V ₁	3.166 3.17 ¹ 3.168	B ² 1.231 1.225 ²
V ₂ 1NN	6.470 6.50 ¹ 6.452	1 ² 1.448 1.80 ¹ 1.441 ²
2NN	6.778 6.81 ¹ 6.816	5 ² 1.862 2.15 ¹
3NN	6.458 6.47 ¹ 6.445	5 ² 1.309
V ₃ 1NN+1NN-s	9.719 10.71 ³	1.450
1NN+1NN-b ₁	9.638 10.58 ³	1.534 1.44 ³
1NN+1NN-b ₂	9.816	1.725
1NN+2NN	9.979 10.96 ³	1.836 1.83 ³
2NN+2NN-s	10.407 11.36 ³	1.834
2NN+2NN-b	10.205 11.16 ³	1.862

Table 1: Vacancy formation energies and

- The present MLFF can predict DFT formation energies of V_n and V_n H complexes within an average accuracy of 0.5 eV (Fig. 3).
- Both MLFF and DFT calculations indicate that trapping a single hydrogen atom at a vacancy reduces its formation energy (Fig. 3).
- In both di-vacancy and tri-vacancy structures, the Osite at the center was found to be more favorable for hydrogen trapping than those at the periphery.

¹D. Kato +, JNM, 417 (2011) ²K. Ohsawa +, JNM, 527 (2019) ³D. Kato (**AM05**), MoD-PMI 2017

Fig. 3: $V_{1\sim3}$ and $V_{1\sim3}$ H formation energies

- DFT calculations revealed that the trapping of a single hydrogen atom altered the most stable configuration of vacancy clusters. This has an important implication in modeling vacancy agglomeration interacting with ambient hydrogen atoms.
- The present MLFF provides more accurate predictions for the binding energies of multiple hydrogen atoms at mono-vacancies than available empirical potentials (Fig. 4 (a)).

• The 1NN di-vacancy case also showed similar consistency with DFT (Fig. 4(b)).

Conclusion & Future work

- For tungsten containing atomic vacancies and hydrogen atoms, we constructed the MLFF that can reproduce DFT results fairly accurately.
- The present studies showed that hydrogen trapping stabilizes vacancies. Further insights into the effects of hydrogen in vacancies can be gained through density of states (DOS) analysis.
- The MLFF will be further optimized to search for stable structures of larger clusters and to perform molecular dynamics simulations at finite temperatures.

Fig. 4: Binding energies of H atoms to vacancies

Acknowledgements

The authors thank the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo for the use of the facilities.

• This work was supported by JST SPRING, Japan Grant Number JPMJSP2136.

