

# Sensitivity analysis and optimization of multi-scale models for microstructural evolution in metal materials under neutron irradiation

Shaoting Wan<sup>1</sup>, Chaoxiang Lin<sup>1</sup>, **Zhangcan Yang**<sup>1, \*</sup>, Hong-Bo Zhou<sup>2</sup>

<sup>1</sup> School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
<sup>2</sup> Department of Physics, Beihang University, Beijing 100191, China

1

Email: yang\_zhangcan@hust.edu.cn

# Outline



## 1) Introduction

Irradiation damage in tungsten

Multi-scale modeling of irradiation effects

Uncertainty quantification & sensitivity analysis

## 2) Method

The OKMC model

Sensitivity analysis

Surrogate model

## 3) Sensitivity Analysis

Sensitivity at 733K and 0.02dpa

Factors affecting the sensitivity potentially

## 4) Surrogate Models

Polynomial Chaos Expansion

Artificial Neural Network

## 5) Conclusion & Fututure Work

## Irradiation damage in tungsten





## **Multi-scale modeling of irradiation effects**





## **Multi-scale modeling of irradiation effects**



| Google Scholar                                                     | fusion tungsten simulation and modeling                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Articles                                                           | (bout 55.100 results (0,12 sec) 55,100 results                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Any time<br>Since 2025<br>Since 2024<br>Since 2021<br>Custom range | Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions<br>J Marian, CS Becquart, <u>C Domain</u> , <u>SL Dudarev</u> Fusion, 2017 - iopscience.iop.org<br>the-art in materials simulations of W in fusion environments and highlight modeling and<br>simulation have produced. Often, the simulation paradigm within which computational modeling<br>☆ Save 50 Cite Cited by 150 Related articles All 14 versions |
| Sort by relevance<br>Sort by date                                  | [PDF] Recent advances in computational materials <b>modeling</b> of <b>tungsten</b> as plasma-facing material for <b>fusion</b> energy applications                                                                                                                                                                                                                                                                                                                        |

- Thousands of related research work (Google Scholar: 55100 results).
- Most of them use DFT or MD methods, forming a solid foundation for mesoscale methods such as Object kinetic Monte Carlo (OKMC) and Cluster Dynamics (CD).

## OKMC

Simulate defect diffusion and microstructure evolution processes

#### Defect size, concentration

#### Microstructural morphology

#### Can be easily compared with experimental findings



Information of microstructures can be fed to further predict the change of mechanical properties..

OKMC bridges the simulation of microscopic mechanisms with the macroscopic observations.

Niu, Y. Z., Li, Y. H., Ren, Q. Y., Li, Z. Z., Terentyev, D., Ma, H. Z., ... & Lu, G. H. (2023). Influence of carbon on the evolution of irradiation defects in tungsten. Journal of Nuclear Materials, 579, 154393. Li, Y., & Ghoniem, N. (2020). Cluster dynamics modeling of irradiation growth in single crystal Zr. Journal of Nuclear Materials, 540, 152312.



#### Suppression of He-induced damage by Beryllium





(h) 3×10<sup>20</sup>m<sup>-2</sup> He fluence

#### **Void lattice formation**



[1] Zhou et al., Nuclear Fusion. 64 (2024) 106021. [2] Li et al., Acta Materialia. 219 (2021) 117239.

6

## The OKMC model





Niu, Y. Z., Li, Y. H., Ren, Q. Y., Li, Z. Z., Terentyev, D., Ma, H. Z., ... & Lu, G. H. (2023). Influence of carbon on the evolution of irradiation defects in tungsten. Journal of Nuclear Materials, 579, 154393.

## **Uncertainty quantification & sensitivity analysis**





#### **Reduce calculational costs of parameter calibration**

## **Uncertainty quantification & sensitivity analysis**



#### **PCE surrogate model + Sobol' indices**

(PCE: Polynomial Chaos Expansion)



There have been attempts in nuclear materials field to employ the approach.

#### Characteristics

A large number of training samples

#### The increase of uncertainty

#### LHS + Spearman correlation coefficient

(LHS: Latin Hypercube Sampling)





The method was applied in many studies on severe accidents and thermal-hydraulics in fission reactors.

#### Characteristics

**More universal / Broad applicability** 

#### **Relatively low computational cost**

Robbe, P., Blondel, S., Casey, T. A., Lasa, A., Sargsyan, K., Wirth, B. D., & Najm, H. N. (2023). Global sensitivity analysis of a coupled multiphysics model to predict surface evolution in fusion plasma–surface interactions. Computational Materials Science, 226, 112229. Seo, S. B., & Wirth, B. D. (2023). Sensitivity analysis of cesium and strontium release from TRISO particle under irradiation and high temperature conditions. Nuclear Engineering and Design, 408, 112333.

Peng, C., et al. (2023, May). Best Estimate Plus Uncertainty Analysis of a Pressurizer Surge Line Break LOCA on China's Advanced PWR. In Proceedings of the 23rd Pacific Basin Nuclear Conference, Volume 2: PBNC 2022, 1-4 November, Beijing & Chengdu, China (pp. 490-505). Singapore: Springer Nature Singapore.

Yang, Y., Deng, C., & Yang, J. (2021). Best estimate plus uncertainty analysis of a small-break LOCA on an advanced Generation-III pressurized water reactor. International Journal of Energy Research, 45(8), 11916-11929.

## **Uncertainty quantification: surrogate models**



In an inverse UQ study of combustion kinetic models, the test errors of three typical surrogate models are compared.



Wang, J., Zhou, Z., Lin, K., Law, C. K., & Yang, B. (2020). Facilitating Bayesian analysis of combustion kinetic models with artificial neural network. Combustion and Flame, 213, 87-97.

# Outline



## 1) Introduction

Nuclear fusion in renewables-based system Irradiation damage in tungsten

Multi-scale modeling of irradiation effects

Uncertainty quantification & sensitivity analysis

## 2) Method

The OKMC model

Sensitivity analysis

Surrogate model

## 3) Sensitivity Analysis

Sensitivity at 733K and 0.02dpa

Factors affecting the sensitivity potentially

## 4) Surrogate Models

Polynomial Chaos Expansion

Artificial Neural Network

## 5) Conclusion & Fututure Work

# The OKMC model





# Sensitivity analysis: flow chart





Hu, X., & et al. (2016). Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation. Journal of Nuclear Materials, 470, 278-289.

# **Experiments**



|                                  |                          | Fission reactor            | Material Type    | Irradiation<br>temperature [°C] | Dose [dpa] |
|----------------------------------|--------------------------|----------------------------|------------------|---------------------------------|------------|
|                                  |                          | HFIR (mixed neutron        | Single crystal   | ~90                             | 0.02       |
|                                  |                          | spectrum) [21–23,37]       |                  | ~90                             | 0.39       |
|                                  |                          |                            |                  | 460                             | 0.02       |
|                                  |                          | [/33]                      | K, 0.02dpa       | 797                             | 0.092      |
| 9 B G G G G                      |                          |                            |                  | 700                             | 0.44       |
| Tarat Bundla                     |                          |                            |                  | 770                             | 1.80       |
| In Flux Trap                     |                          |                            |                  | 1100                            | 0.47       |
|                                  |                          |                            | Polycrystalline  | 800                             | 1.50       |
|                                  |                          |                            |                  | 700                             | 2.80       |
|                                  |                          | JMTR (mixed neutron        | Polycrystalline  | 600                             | 0.15       |
|                                  |                          | spectrum) [13,17]          |                  | 800                             | 0.15       |
|                                  |                          | Joyo (Fast reactor) [8,11] | Polycrystalline  | 400                             | 0.17       |
|                                  |                          |                            |                  | 531                             | 0.44       |
| Horizontal Large Removable       |                          |                            |                  | 538                             | 0.96       |
| HB-2 Beryllium Facility          |                          |                            |                  | 583                             | 0.47       |
|                                  | The state barrely        |                            |                  | 740                             | 0.40       |
|                                  |                          |                            |                  | 750                             | 1.54       |
| Position Small Vertical          |                          |                            |                  | 756                             | 0.42       |
| C Experiment                     |                          | HFR (mixed neutron         | Single crystal   | 900                             | 1.67       |
| Facility (VXF)                   |                          | spectrum) [38]             | Polycrystalline  |                                 |            |
| Inner Fuel Element               |                          | BR2 (mixed neutron         | Polycrystalline  | 800                             | 1.25       |
| Outer Fuel Element               |                          | spectrum) [24,39,40]       |                  |                                 |            |
| Control Region 0 2 4 6           |                          |                            |                  |                                 |            |
| Inches                           |                          |                            |                  |                                 |            |
|                                  |                          |                            | Single crystal   | 600                             | 0.2        |
|                                  |                          |                            |                  | 800                             |            |
|                                  | T 11 . 1                 |                            |                  | 1200                            |            |
| High Flux Isotope Reactor (HFIR) | Irradiation test samples |                            | ITER grade       | 600                             | 0.2        |
|                                  | 1                        |                            |                  | 800                             |            |
|                                  |                          |                            |                  | 1200                            |            |
|                                  |                          |                            |                  | 1200                            | 0.18       |
|                                  |                          |                            | Cold rolled pure | 600                             | 0.2        |
|                                  |                          |                            | polycrystalline  | 800                             |            |
|                                  |                          |                            |                  | 1200                            |            |

#### https://neutrons.ornl.gov/hfir

Hu, X. (2022). Recent progress in experimental investigation of neutron irradiation response of tungsten. Journal of Nuclear Materials, 568, 153856.

# Sensitivity analysis: flow chart





#### Hu, X., & et al. (2016). Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation. Journal of Nuclear Materials, 470, 278-289.

# Sensitivity analysis: sampling settings



### Parameters to be analyzed

| Physical Meaning                | Symbol           | <b>Reference</b> value | Range            |
|---------------------------------|------------------|------------------------|------------------|
| Capture radius of vacancy       | $R_{\rm V}$      | 1                      | *(0.8~1.2)       |
| Capture radius of SIA           | $R_{W}$          | 1                      | *(0.8~1.2)       |
| Migration energy of monovacancy | $E_{m,1V}$       | 1.68 eV                | +(-0.1~0.1) eV   |
| Migration energy of divacancy   | $E_{m,2V}$       | 1.44 eV                | +(-0.1~0.1) eV   |
| Migration energy of tri-vacancy | $E_{m,3V}$       | 0.83 eV                | +(-0.1~0.1) eV   |
| Binding energy of divacancy     | $E_{b,2V}$       | -0.12 eV               | +(-0.1~0.1) eV   |
| Binding energy of tri-vacancy   | $E_{b,3V}$       | -0.0636 eV             | +(-0.1~0.1) eV   |
| Migration energy of SIA         | $E_{m,W}$        | 0.023 eV               | +(-0.01~0.01) eV |
| Rotation energy of SIA          | E <sub>r,W</sub> | 0.38 eV                | +(-0.1~0.1) eV   |

## **Settings**

- Number of samples: 60;
- Number of recalculations for one sample: 15.

# Surrogate model: PCE



Expansion

**Truncation** 

$$y = F(X) = \sum_{\alpha \in I^d} c_{\alpha} \Psi_{\alpha}(X)$$

 $P = \binom{d+p}{p} = \frac{(d+p)!}{d!\,p!}$ 

- *y*: model outputs, QoI
- F(X): Functional relationship
- *I<sup>d</sup>*: d-dimentional parameter space
- $c_{\alpha}$ : PCE coefficient
- $\Psi_{\alpha}(X)$ : orthogonal
- multivariate basis function
- *P*: number of polynomial terms
- **p**: highest order of polynomials

## **Calculation of PCE coefficients**

| Intrusive methods     | Galerkin projection | • Requiring modifications of the numerical code 💛 OKMC |
|-----------------------|---------------------|--------------------------------------------------------|
| Non-intrusive methods | Spectral projection | Gaussian quadrature rules, Smolyak sparse grid         |
|                       | Regression          | • Least squares methods, compressed sensing methods    |

•



## **Multilayer Perception trained with Backpropagation Algorithm**



- (1) Randomly assign the weights and compute the network solution;
- (2) Compute the error between the outputs of network and training data, and back propagate the weights to each layer;
- (3) Re-assign the weights to avoid the same error, and so on do iterations;
- (4) Obtain the optimal weight matrix as the best approximation.

- Settings
  - Activation function: the hyperbolic tangent, a = tanh(n)
    - Training method: Levenberg-Marquardt algorithm, a second-order Quasi-Newton optimization method

# Outline



## 1) Introduction

Nuclear fusion in renewables-based system

Irradiation damage in tungsten

Multi-scale modeling of irradiation effects

Uncertainty quantification & sensitivity analysis

## 2) Method

The OKMC model

Sensitivity analysis

Surrogate model

## 3) Sensitivity Analysis

Sensitivity at 733K and 0.02dpa

Factors affecting the sensitivity potentially

## 4) Surrogate Models

Polynomial Chaos Expansion

Artificial Neural Network

## 5) Conclusion & Fututure Work

## Sensitivity at 733K and 0.02dpa









# Sensitivity at 733K and 0.02dpa





# Sensitivity at 733K and 0.02dpa





# Outline



## 1) Introduction

Nuclear fusion in renewables-based system

Irradiation damage in tungsten

Multi-scale modeling of irradiation effects

Uncertainty quantification & sensitivity analysis

## 2) Method

The OKMC model

Sensitivity analysis

Surrogate model

## 3) Sensitivity Analysis

Sensitivity at 733K and 0.02dpa

Factors affecting the sensitivity analysis

## 4) Surrogate model

Polynomial Chaos Expansion

Artificial Neural Network

## 5) Conclusion & Future Work

## **Potential factor: different ranges of values**



We selected one high-sensitivity parameter (**Migration energy of single Vac**, <**left**>) and one low-sensitivity parameter (**Migration energy of SIA**, <**right**>) from the previous analysis results for further study.



Samples concentrating within a smaller range may affect the accuracy of the analysis results.

No clear trends or patterns.

## **Potential factor: multiparameter analysis**





We selected the four sensitive parameters as the target parameters for multi-parameter analysis.

The sample size is 300.

0.980

Emig1v

0.992

0.694

0.680

Emig1v

0.522

Erot

Erot

-0.213

The numbers in red are the sensitivity for single-parameter analysis.

Sensitivity of capture radiuses is reduced.

#### No other substantial impact

identified for now.

## **Potential factor: different irradiation doses**



At low irradiation doses, recombination may be insufficient and the aggregation of SIAs dominates.

No clear trends or patterns.

## **Potential factor: different temperatures**





# Outline



## 1) Introduction

Nuclear fusion in renewables-based system

Irradiation damage in tungsten

Multi-scale modeling of irradiation effects

Uncertainty quantification & sensitivity analysis

## 2) Method

The OKMC model

Sensitivity analysis

Surrogate model

## 3) Sensitivity Analysis

Sensitivity at 733K and 0.02dpa

Factors affecting the sensitivity potentially

## 4) Surrogate Models

Polynomial Chaos Expansion

Artificial Neural Network

## 5) Conclusion & Fututure Work

## **Polynomial Chaos Expansion**





## **Polynomial Chaos Expansion**



#### **Gaussian quadrature**



Gaussian-quadrature PCE results match OKMC outputs better.

**Smoothing and global averaging** in the process of integral computation

Training samples that are **more uniformly distributed** in the parameter space

Reducing interference from data noise

#### Limitation:

Due to the **sample size**, it is difficult to build surrogate models that include more input parameters.

## **Polynomial Chaos Expansion**



Sparse grid



# Outline



## 1) Introduction

Nuclear fusion in renewables-based system

Irradiation damage in tungsten

Multi-scale modeling of irradiation effects

Uncertainty quantification & sensitivity analysis

## 2) Method

The OKMC model

Sensitivity analysis

Surrogate model

## 3) Sensitivity Analysis

Sensitivity at 733K and 0.02dpa

Factors affecting the sensitivity potentially

## 4) Surrogate Models

Polynomial Chaos Expansion

Artificial Neural Network

## 5) Conclusion & Fututure Work

## **Artificial Neural Network**



34

#### Settings of ANN surrogate models with 4 inputs and 4 outputs

| Number of<br>hidden layers | 1  | 2     | 3     |               |
|----------------------------|----|-------|-------|---------------|
| Number of                  | 10 | 8,8   | 6,6,6 | ( <b>mm</b> ) |
| nodes in each<br>layer     | 16 | 12,12 | 8,8,8 | outputs       |

Six different surrogate models were built for each of the three sets of training samples in PCE part.

- ANN outperforms PCE in overall surrogate performance.
- MLP [4, 10, 4] and [4, 6, 6, 6, 4] have better performance in ANN surrogate models.
- MLP [ 4, 10, 4 ] is more computationally efficient than MLP [ 4, 6, 6, 6, 4 ].

#### MLP [ 4, 10, 4 ] with 126 samples



## **Artificial Neural Network**





# Outline



## 1) Introduction

Nuclear fusion in renewables-based system

Irradiation damage in tungsten

Multi-scale modeling of irradiation effects

Uncertainty quantification & sensitivity analysis

## 2) Method

The OKMC model

Sensitivity analysis

## 3) Sensitivity Analysis

Sensitivity at 733K and 0.02dpa

Factors affecting the sensitivity potentially

## 4) Surrogate Models

Polynomial Chaos Expansion

Artificial Neural Network

5) Conclusion & Fututure Work

# Conclusion

٠



To better characterize the parameters of OKMC and optimize the model prediction, we performed a sensitivity analysis of OKMC and assessed 4 potential factors that may affect the results of sensitivity.

• Four sensitive parameters with significant impacts on the OKMC simulation results were identified:

| Migration energy of single Vac | <b>Rotation energy of SIA</b> |
|--------------------------------|-------------------------------|
| <b>Capture radius of Vac</b>   | <b>Capture radius of SIA</b>  |

#### Four potential factors



# **Conclusion&Future Work**



To **reduce the computational costs** of inverse uncertainty quantification, two types of **surrogate models** constructed for OKMC are analyzed and assessed in terms of method setup, surrogate performance, and error calculation.

• Simple structure ANN models with fewer hidden layers are preferred for building OKMC surrogate models.

Capable of reducing the interference of data noise

Have stable performance

• It is difficult for PCE models to fundamentally solve the **overfitting problem**. The Gaussian PCE model has a

good surrogate performance. However, its obvious defects in high-dimensional problems cannot be ignored.

#### **Future Work**

To reduce uncertainty, we need to **characterize** the sensitive parameters **more precisely**.

**Inverse Uncertainty Quantification** 

Bayesian approach + MCMC method

Experimental data

Surrogate model

Parameter calibration



Thank you for your attention!

