Sensitivity analysis and optimization of multi-scale models for

microstructural evolution in metal materials under neutron irradiation

Shaoting Wan'!, Chaoxiang Lin!, Zhangcan Yang'-*, Hong-Bo Zhou?

I School of Energy and Power Engineering, Huazhong University of Science and Technology,
gy g g g
Wuhan 430074, China

> Department of Physics, Beihang University, Beijing 100191, China

Email: yang zhangcan@hust.edu.cn 1



Outline €

1) Introduction
3) Sensitivity Analysis

Irradiation damage in tungsten

Multi-scale modeling of irradiation effects Sensitivity at 733K and 0.02dpa

Uncertainty quantification & sensitivity analysis Factors affecting the sensitivity potentially

The OKMC model Polynomial Chaos Expansion

Sensitivity analysis Artificial Neural Network

Surrogate model

|
|
|
|
|
|
|
|
2) Method : 4) Surrogate Models
|
|
|
: 5) Conclusion & Fututure Work
|
|



©

IcARE

Irradiation damage in tungsten

Research on
Irradiation Damage in Tungsten

Experiments Simulations Efficient

Microscopic

Fusion neutron mechanisms

irradiation

Plasma-Facing

Tungsten Lack of devices to generate
Components

i Extrapolated to
fusion neutron of 14.1 Mev § mulated with

the prediction

* High flux of H and He ions FlSSlOIlgILlelltl'Oll

* Intense neutron irradiation

Ion irradiation

Aymar, R., Barabaschi, P., & Shimomura, Y. (2002). The ITER design. Plasma physics and controlled fusion, 44(5), 519. 3



Multi-scale modeling of irradiation effects
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Multi-scale modeling of irradiation effects
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Go gle Scholar fusion tungsten simulation and modeling n

Articles Kbout 55100 results (0,12 sec) 55 100 results
’

Any time Recentadv esin modeling and simulation of the exposure and response of
Since 2025 tungsten to fusion energy conditions

Since 2024 J Marian, CS Becquart, C Domain, SL Dudarev... - ... Fusion, 2017 - iopscience.iop.org

Since 2021 ... the-art in materials simulations of W in fusion environments and highlight ... modeling and

simulation have produced. Often, the simulation paradigm within which computational modeling ...

Custom range...
Y% Save Y9 Cite Cited by 150 Related articles All 14 versions

Sort by relevance
Sort by date [PoF] Recent advances in computational materials modeling of tungsten as

plasma-facing material for fusion energy applications

* Thousands of related research work (Google Scholar:
55100 results).

* Most of them use DFT or MD methods, forming a solid
foundation for mesoscale methods such as Object
kinetic Monte Carlo (OKMC) and Cluster Dynamics
(CD).

OKMC \U

Defect size, concentration [ Microstructural morphology

Can be easily compared with experimental findings
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Simulate defect diffusion and microstructure
evolution processes
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macroscoplc observations.
Niw, Y. Z., et al. INM (2023)

Niu, Y. Z.,Li, Y. H.,Ren, Q. Y., Li, Z. Z., Terentyev, D., Ma, H. Z., ... & Lu, G. H. (2023). Influence of carbon on the evolution of irradiation defects in tungsten. Journal of Nuclear Materials, 579, 154393.
Li, Y., & Ghoniem, N. (2020). Cluster dynamics modeling of irradiation growth in single crystal Zr. Journal of Nuclear Materials, 540, 152312. S



The application of OKMC methods: examples

Suppression of He-induced damage by Beryllium Void lattice formation
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[1] Zhou et al., Nuclear Fusion. 64 (2024) 106021.
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The OKMC model

Self-Interstitial Thermal-activated
D —m— . Atom Based on probability
Vacancy Loop ‘ e Defects move to neighboring
Void e SIA g locations.
. o ® Vacanc
Migration *»  Mierat y : Defects change the current
\ . ~1gra on Rotation migration direction.
\ ‘28" Dislocation
'- . / Line o .
SIA 99, : . Individual defects emit from
Absorbing Dissociation |, .~
LLET CEEETT Vacancy Cluster
Surface .‘
Capture Non-thermal-activated
Migration/ - element Based on capture radius
e 7
'*\ o Acoresation | Defects or clusters combine to
\ / £8rce form larger clusters.
Adots Vacancy SIA Loop
Recombination Dissimilar defects or clusters
* combine and heal.
'\.__I‘)ISSOClatlon Capture Defects are absorbed by capture
% -+ 0.0 —> @ elements.
Recombination ATl Defects are removed when moving
to absorbing surfaces.

Niu, Y. Z., Li, Y. H,, Ren, Q. Y., Li, Z. Z., Terentyev, D., Ma, H. Z., ... & Lu, G. H. (2023). Influence of carbon on the evolution of irradiation defects in tungsten. Journal of Nuclear Materials, 579, 154393.



Uncertainty quantification & sensitivity analysis

e.g. Monovacancy migration energy : 1.68eV, 1.50eV, 1.97¢V ...
E, v
Migraticcl);l en(e)rgies Divacancy binding energy : -0.41eV, - 0.06eV, +0.42¢V, +0.7 eV ..}
Uncertainty I]?(I)Itlgtll%% eelllleel;gglizss Probability of dissociation :

1.44e-5, 2.17e-10|...

Stochastic events

L Different outputs in several simulations with same probabilities.
based on probabilities

Sensitivity Analysis

«Identify sensitive parameters >
e Perform calibration

optimization

Uncertainty Quantification Parameter

e Parameter estimation
* Uncertainty propagation

( Surrogate models )

* Sensitivity Analysis

* The stochastic mechanism 1s crucial
to the OKMC model.

Mechanism

Reduce calculational costs of parameter calibration



Uncertainty quantification & sensitivity analysis

PCE surrogate model + Sobol’ indices LHS + Spearman correlation coefficient
( PCE: Polynomial Chaos Expansion ) ( LHS: Latin Hypercube Sampling)

et i e |
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R, oo T C. Peng, et al. (2023
Pieterjan Robbe, et al. (2023) Seok Bin Seo, et al. (2023) eng, et al. (2023) Ye Yang, etal. (2021)
There have been attempts in nuclear materials field to The method was applied in many studies on severe accidents
employ the approach. and thermal-hydraulics in fission reactors.
Characteristics Characteristics
A large number of training samples More universal / Broad applicability
The increase of uncertainty Relatively low computational cost

Robbe, P, Blondel, S., Casey, T. A., Lasa, A., Sargsyan, K., Wirth, B. D., & Najm, H. N. (2023). Global sensitivity analysis of a coupled multiphysics model to predict surface evolution in fusion plasma—surface interactions. Computational Materials Science, 226, 112229.

Seo, S. B., & Wirth, B. D. (2023). Sensitivity analysis of cesium and strontium release from TRISO particle under irradiation and high temperature conditions. Nuclear Engineering and Design, 408, 112333.

Peng, C., et al. (2023, May). Best Estimate Plus Uncertainty Analysis of a Pressurizer Surge Line Break LOCA on China’s Advanced PWR. In Proceedings of the 23rd Pacific Basin Nuclear Conference, Volume 2: PBNC 2022, 1-4 November, Beijing & Chengdu, China

(pp. 490-505). Singapore: Springer Nature Singapore. 9
Yang, Y., Deng, C., & Yang, J. (2021). Best estimate plus uncertainty analysis of a small-break LOCA on an advanced Generation-1II pressurized water reactor. International Journal of Energy Research, 45(8), 11916-11929.



Uncertainty quantification: surrogate models

In an inverse UQ study of combustion Kkinetic models, the test errors of three typical

surrogate models are compared.

High Dimentional Model

Polynomial Chaos Expansion Artificial Neural Network

Representatiaon
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Number of Training Samples Number of Training Samples Number of Training Samples
J. Wang, et al. (2020)
PCE & ANN High convergence speed High accuracy
HDMR Convergence speed and accuracy are mutually exclusive.

Wang, J., Zhou, Z., Lin, K., Law, C. K., & Yang, B. (2020). Facilitating Bayesian analysis of combustion kinetic models with artificial neural network. Combustion and Flame, 213, 87-97. 10
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The OKMC model

How to calculate the probabilities/rates ? * R : rates of events
E, * Vo: attempt frequency e kpg: Boltzmann constant
Arrhenius formula R = voXexp(— m * E,: activation energy  * T: temperature
Potential |
energy

E,*, R 3§ T 4, R %

Transition-state
theory

What outputs need attention ?

Reaction process

I Vacancy Clusters — Average Size
Defects Characteristics
mainly affecting the mechanical — ~<
properties of tungsten
\ SIA Clusters — Number Density

12
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Sensitivity analysis: flow chart

Identification & Characterization Simulation of OKMC

of Uncertainties
Facility of the experiments The outputs of OKMC
High Flux Isotope Reactor (HFIR)

Migration energies Average size of Vac clusters

Probability Filter th at Oak Ridge National Laboratory
Binding energies estimation Hter the (ORNL) *  Number density of Vac clusters
_ . parameters .
Rotation energies to be analyzed * Average size of SIA clusters
_ The thermal and cold neutrons produced | | Number densitv of SIA clusters
Capture radiuses by HFIR are used to study physics, i 4
chemistry, materials science, engineering, |
etc. . :
and biology.
Generation of Samples Sensitivity Analysis
Potential factors
gatln pre{;ﬂs’e A methodt c:featlng m(;re lSi).earmalflf - +  Range of values + Multiparameter
ampling ( ) representative samples correlation coefficien + Irradiation dose * Temperature

13

Hu, X., & et al. (2016). Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation. Journal of Nuclear Materials, 470, 278-289.
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Experiments e

Irradiation

Fission reactor Material Type temperature [°C] Dose [dpa]
HFIR (mixed neutron Single crystal ~90 0.02
spectrum) [21-23,37] ~90 0.39
| 460 0.02 I
700 0.44
Target Bundle 770 1.80
In Flux Trap 1100 0.47
Polycrystalline 800 1.50
700 2.80
JMTR (mixed neutron Polycrystalline 600 0.15
spectrum) [13,17] 800 0.15
Joyo (Fast reactor) [8,11] Polycrystalline 400 0.17
531 0.44
Horizontal
Be:::?:::a Large Removable 538 0.96
Beryllium Facility 583 047
(RB*)
Peripheral 740 0.40
Target 750 1.54
Positi
. Small Vertical ) X 756 0.42
Experiment HFR (mixed neutron Single crystal 900 1.67
POV e spectrum) [38] Polycrystalline
Inner Fuel Element Lo BR2 (mixed neutron Polycrystalline 800 1.25

spectrum) [24,39,40]

Experiment
Facility (VXF)

Outer Fuel Element

Control Region

Single crystal 600 0.2
800
. L. 1200
High Flux Isotope Reactor (HFIR) Irradiation test samples ITER grade 600 02
1200
1200 0.18
Cold rolled pure 600 0.2
polycrystalline 800
1200

https://neutrons.ornl.gov/hfir 14
Hu, X. (2022). Recent progress in experimental investigation of neutron irradiation response of tungsten. Journal of Nuclear Materials, 568, 153856.
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Sensitivity analysis: flow chart

Identification & Characterization Simulation of OKMC

of Uncertainties

Facility of the experiments The outputs of OKMC

High Flux Isotope Reactor (HFIR)

Migration energies Average size of Vac clusters

Probability at Oak Ridge National Laboratory
Binding energies estimation Parameters (ORNL)

Rotation energies to be analyzed

*  Number density of Vac clusters

* Average size of SIA clusters

The thermal and cold neutrons produced :
I ) - f SIA cl
Capture radiuses by HFIR are used to study physics, : IRl S AU B N

chemistry, materials science, engineering, |
and biology.

Generation of Samples Sensitivity Analysis
Potential factors
Latin IL'Iypercube A method crfeatlng more Sp.earman . + Range of values + Multiparameter
Sampling (LHS) representative samples correlation coefficient 2
* Irradiation dose * Temperature
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Hu, X., & et al. (2016). Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation. Journal of Nuclear Materials, 470, 278-289.



Sensitivity analysis: sampling settings
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Parameters to be analyzed

Physical Meaning Symbol Reference value Range

Capture radius of vacancy Ry 1 *(0.8~1.2)

Capture radius of STA Ry 1 *(0.8~1.2)
Migration energy of monovacancy Em1v 1.68 eV +(-0.1~0.1) eV
Migration energy of divacancy Emov 1.44 eV +(-0.1~0.1) eV
Migration energy of tri-vacancy Ensv 0.83 eV +(-0.1~0.1) eV
Binding energy of divacancy Epov -0.12 eV +(-0.1~0.1) eV
Binding energy of tri-vacancy Epsv -0.0636 eV +(-0.1~0.1) eV

Migration energy of SIA Enw 0.023 eV +(-0.01~0.01) eV

Rotation energy of SIA E.w 0.38 eV +(-0.1~0.1) eV

Settings

* Number of samples: 60;

* Number of recalculations for one sample: 15.

16



Surrogate model: PCE

* y: model outputs, Qol * Cq4: PCE coefficient
Expansion y=FX) = 2 c,¥,(X) * F(X): Functional relationship Y, (X): orthogonal
acld « I%: d-dimentional parameter space ~ multivariate basis function
. d+ p) (d+p)! * P: number of polynomial terms
P = =
Truncation ( p d! p! * pP: highest order of polynomials
Calculation of PCE coefficients
Intrusive methods Galerkin projection * Requiring modifications of the numerical code * OKMC

Non-intrusive methods Spectral projection ¢ Gaussian quadrature rules, Smolyak sparse grid

Regression * Least squares methods, compressed sensing methods

17



Surrogate model: ANN

Multilayer Perception trained with Backpropagation Algorithm

* (1) Randomly assign the weights and

Input layer | Hidden layer 1 Output layer

compute the network solution;

* (2) Compute the error between the

pl — Traning data
| output outputs of network and training data,
! |7 ! Y
| . | \ J and back propagate the weights to
p2 — I |
i Wi - W : Error each layer;
| * (3) Re-assign the weights to avoid
|
the same error, and so on do iterations;
Back propagation

* (4) Obtain the optimal weight matrix

as the best approximation.

Settings * Activation function: the hyperbolic tangent, a = tanh(n)

* Training method: Levenberg-Marquardt algorithm, a second-order Quasi-Newton optimization method

18

D. Atabay. Pyrenn: a recurrent neural network toolbox for python and matlab. Available at: http://pyrenn.readthedocs.io/en/latest/, 2018
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Sensitivity at 733K and 0.02dpa e
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Migration energy of single Vac

‘ Number density of voids
0.992

Rotation energy of SIA
Average size of voids ‘

1.0 0.925

Capture radius of SIA
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] 0.160

0.0+
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-0.022

Em 3V Eb 2V Eb 3V Er W

-0.54

-0.771

1.0 Migration energy of single Vac

Spearman correlation coefficient
Spearman correlation coefficient

“?1 Capture radius of Vac & SIA
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Average size of voids
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Sensitivity at 733K and 0.02dpa e

Migration energy of single Vac

‘ Number density of voids
0.992

Rotation energy of SIA
Average size of voids ‘

1.0+ 0.925 1.0

Capture radius of SIA .
0.5+ .5

0.333
] 0.160

0.04

0.04

Em 1V Em 2V Eb 2V

Eb 3V Em W

-0.022

Em 3V Eb 3V Er W

Eb 2V

-0.54 0.54

-0.771

Migration energy of single Vac

Spearman correlation coefficient
Spearman correlation coefficient

07 -0.988 ““1 Capture radius of Vac & SIA
Y Large Vac clusters .
: 8 E Single Vac migration '
R = vyxexp(— k_aT Small Vac clusters ‘
B

SIA rotation ' sy One-dimensional movements‘—b Recombination'

Capture radius‘ =P Agoregation & recombination ‘
22



Sensitivity at 733K and 0.02dpa

Rotation energy of SIA

Average size of SIA clusters ‘ ' Number density of SIA clusters

103 0.858 e

Capture radius of SIA == Migration energy of single Vac

l 0.352

0.5 0.5

0.092 5064 0.059 0.072

0.0 0.0 -

Em_2V  Em 3V Eb 2V Eb3V Em W ErW

-0.329 -0.315

-0.54
Migration energy of single Vac

-1.04

Spearman correlation coefficient
Spearman correlation coefficient

Four sensitive parameters
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Potential factor: different ranges of values

We selected one high-sensitivity parameter (Migration energy of single Vac, <left>) and one low-sensitivity
parameter (Migration energy of SIA, <right>) from the previous analysis results for further study.

B 0.01870. 028
B 0.01370.033
1.0- [ 0. 00870. 038

1.0

0.5

0‘0——"—-1—1 =

-0.5

0.5 7

0.0

-0.5

-1.0 A -1.0 1

Spearman correlation coefficient
Spearman correlation coefficient

Average size & Number density of SIA clusters

I I I N I N 1 N 1

T

Size_ V' Density_ 'V  Size W  Density W Size_ V. Density_ 'V  Size W  Density W

Samples concentrating within a smaller range may
. No clear trends or patterns.
affect the accuracy of the analysis results.
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Potential factor: multiparameter analysis

Average size of voids Number density of voids
1.0n 0.925 Lo- 0.980
= 0.843 = .
2 2 We selected the four sensitive parameters
= . L= 0.522 .
"g 051 Capture radius of SIA "q‘é *s1 Capture radiuses as the .target parameters for multi-parameter
E 0.150 _0.988 E analysis.
® 0.0 = 0.0
% ’ Rv Erot % Emiglv Erot ) )
£ = 0.992 The sample size is 300.
% 27 E 0270 _0.498 -0.467
g 0'0;5157 g 0.771 _-0.630 The numbers in red are the sensitivity for
& - 0.978 & single-parameter analysis.
Average size of SIA clusters().858 Number density of SIA clusters
0.894 0.694

0.680

Sensitivity of capture radiuses is

reduced.

0.5

o No other substantial impact

-0.784

=0 -0.736  -0.840

1dentified for now.

Spearman correlation coefficient
Spearman correlation coefficient
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Potential factor: different irradiation doses

Migration energy of Single Vac

1.0

0.5 A

0.0

-0.5

-1.0

Spearman correlation coefficient

B 0. 004dpa
B 0. 008dpa
[ 0. 012dpa
0. 016dpa
0. 02dpa

T

Size V

Average size of SIA clusters

1 I

Density 'V Size W Density W

At low 1rradiation doses, recombination
may be insufficient and the aggregation of
SIAs dominates.

Spearman correlation coefficient

1.0

0.5 A

0.0 1

0.5 A

1.0

Migration energy of SIA

Size V  Density V  Size W Density W

No clear trends or patterns.
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Potential factor: different temperatures €e
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1.0 Average size of voids 107 Number density of voids 363K, 0.004dp a

0.5 0.6 7

. 0.198 0.254 Vacancy migration events are

almost nonexistent.

0.0

Spearman correlation coefficient
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Polynomial Chaos Expansion

Input variables

Linear regression

Average size of Vac clusters

Number density of Vac clusters

Multicollinearity of basis
functions

PCE outputs (nm)

2.0 7
. . . . ® Training samples ¢ Traini 1
Migration energy of single Vac Rotation energy of SIA . Tetsamples” L7l 90 o Tescsamples 7
~ 1.5- 7 ? 1
= 7/ . mE 60 s ’
0 ° 5 7 '\é 7
Capture radius of Vac Capture radius of SIA 1.0 / = > a .
g . / . o { 2 30 o. A
Settings of PCE del g 1. TR e A
ettings o surrogate models 3 0s- o, % = o )
@]
— /s o 1 7/
s = Vs
Order/ Number of Number of test g 0.0 % % 301 ¢
Method . 7 s |
level training samples samples ; 604 7
_0.5 T T T T L T T T T T
Linear -0.5 0.0 0.5 1.0 1.5 2.0 —60 -30 0 30 60 20
. 5 126 PCE outputs (nm) PCE outputs (10 m™)
regression Average size of SIA clusters Number density of SIA clusters
1 ® Traini ! / ® Training samples 7
GﬁuSSlan 4 256 30 304 . T:::I;:l:;]:::p © P s _. 104 e Testsamples p 7
quadrature ~ v e v
: s . T .. P
Sparse grid 4 705 s 151 7 = 9 St
£ .’ H .’
5 o o o . S o o) Cm/o' a o § =10 7 ’
Minimization with least squares S 0 s O ;
% s ’ E s ’
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Polynomial Chaos Expansion

Gaussian quadrature
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Polynomial Chaos Expansion
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Sparse-grid PCE results basically match the
OKMC outputs, but some of the data are biased.

Lower uniformity of

training sample distribution Increased noise

interference
Larger training sample size

Lack of knowledge of the
overall characteristics of
training samples

=P Partial data bias

Limitation:

Less effectiveness in dealing with data noise
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Artificial Neural Network

Settings of ANN surrogate models with 4 inputs and 4 outputs

Number of
hidden layers 1 2 )
Number of 10 8,8 6,0,6
nodes in each
layer 16 12,12 8,88

Six different surrogate models were built for each of

the three sets of training samples in PCE part.

* ANN outperforms PCE in overall surrogate

performance.

 MLP[4,10,4]and|[ 4, 6, 6, 6, 4 ] have better
performance in ANN surrogate models.

 MLP [ 4, 10, 4 ] is more computationally
efficient than MLP [ 4, 6, 6, 6, 4 ].
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Artificial Neural Network
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Conclusion

To better characterize the parameters of OKMC and optimize the model prediction, we performed a

sensitivity analysis of OKMC and assessed 4 potential factors that may affect the results of sensitivity.

* Four sensitive parameters with significant impacts on the OKMC simulation results were identified:

Migration energy of single Vac Rotation energy of SIA
Capture radius of Vac Capture radius of SIA
. Four potential factors

Range of value Reasonable

Multiparameter If computing resources are limited

Irradiation dose Not too low

i

Temperature Activation of specific processes
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Conclusion&Future Work

To reduce the computational costs of inverse uncertainty quantification, two types of surrogate models constructed for

OKMC are analyzed and assessed in terms of method setup, surrogate performance, and error calculation.

* Simple structure ANN models with fewer hidden layers are preferred for building OKMC surrogate models.
Capable of reducing the interference of data noise Have stable performance

» Itis difficult for PCE models to fundamentally solve the overfitting problem. The Gaussian PCE model has a

good surrogate performance. However, its obvious defects in high-dimensional problems cannot be ignored.
Future Work

> To reduce uncertainty, we need to characterize the sensitive parameters more precisely.

Inverse Uncertainty Quantification Experimental data

Bayesian approach + MCMC method Surrogate model

Parameter calibration

38



T AT S
o ) i

o e MR N e e aa AT

p .
LIPY




