

An Impasse in MD simulations of Primary Damage: Which Interatomic Potential yields the correct defect morphology

Manoj Kumar Warrier^{a,b} & Utkarsh Bhradwaj^a

^a Computational Analysis Division, Bhabha Atomic Research Center, Visakhapatnam, India

^b Homi Bhabha National Institute, Anushaktinagar, TROMBAY, Mumbai, India

Aim Compare the primary damage resulting from collision cascades in W from three widely used EAM based interatomic potentials (JW [1], MS [2] & DND-BN [3]) with two recently developed Machine Learning potentials (WSNAP [4], tabGAP [5]) with sufficient statistics

LAMMPS [6] simulations of Collision Cascades in W with

JW, MS, DND-BN, WSNAP and tabGAP IAP

→ 100 random directions at each energy

NVE simulations with variable timestep using a Fixed outer boundary with T control in penultimate cells

S.No	PKA Energy (keV)	Simulation Size	No. of Atoms
1	5	$50 \times 50 \times 50$	250000
2	10	$75 \times 75 \times 75$	843750
3	20	$85 \times 85 \times 85$	1228250
4	50	$100 \times 100 \times 100$	2000000
5	75	$125 \times 125 \times 125$	3906250
6	100	$150 \times 150 \times 150$	6750000
7	150	$200 \times 200 \times 200$	16000000

Table comparing the material properties obtained using the five IAP with published DFT simulations and Experimental results (erors from the comparison are given in brackets – **large errors are highlighted**)

	Property	DFT	Expt.	JW	MS	DND-BN	WSNAP	tabGAP
Lattice Parameter \longrightarrow	a (Å)	3.18	3.17	3.17 (0.15)	3.16 (-0.16)	3.16 (0.0)	3.18 (-0.15)	3.18 (-0.16)
	C11 (GPa)	521	522.0	475.33 (-8.77)	517.41 (-0.69)	544.18 (4.25)	538.99 (3.25)	564.87 (8.21)
Coeficients of stiffness /	C12 (GPa)	195	204.0	195.29 (0.15)	7258.66 (26.79)	350.89 (72.01)	208.73 (2.32)	207.92 (1.92)
tensor	C44 (GPa)	147	161.0	154.63 (-3.96)	186.11 (15.59)	242.37 (50.54)	152.92 (4.03)	152.15 (3.51)
& Elastic modulii	B (GPa)		310.0	288.64 (-6.89)	344.91 (9.5)	415.32 (31.85)	318.82 (1.21)	326.90 (3.78)
	S (GPa)		161.0	148.79 (-7.59)	163.42 (1.5)	184.08 (10.89)	157.80 (-1.99)	162.68 (1.04)
Poisson Ratio	ν		0.28	0.29 (4.0)	0.33 (19.03)	0.39 (40.01)	0.28 (-0.3)	0.27 (-3.91)
	VFE (eV)	3.36	3.80	3.65 (-3.95)	3.86 (1.64)	3.58 (5.91)	3.13 (-6.84)	3.31 (-1.43)
	SIA-Oct (eV)	12.27	10.5	10.26 (-2.24)	11.58 (-5.59)	11.53 (-6.06)	12.34 (0.57)	12.23 (-0.34)
Defect formation	SIA-Tet (eV)	11.72	11.2	10.29 (-8.16)	10.88 (-2.9)	10.83 (-3.31)	11.82 (0.84)	12.50 (6.61)
oporgios	SIA-DB-100 (eV)	12.2	11.5	10.15 (-11.75)	11.87 (-2.7)	11.34 (-1.39)	11.60 (0.87)	12.43 (1.89)
energies	SIA-DB-110 (eV)	10.58	10.60	9.99 (-5.58)	9.78 (-7.59)	9.68 (-8.49)	10.39 (-1.78)	11.28 (6.38)
	SIA-DB-111 (eV)	10.29	10.30	9.55 (-7.17)	9.65 (-6.21)	9.37 (-8.98)	10.33 (0.26)	11.14 (8.17)
Coefficient of thermal	DB 110-111 (eV)	0.3	0.30	0.44 (-50.98)	0.13 (56.76)	0.32 (-8.65)	0.06 (77.81)	0.13 (53.69)
	$\alpha(K^{-1})$	4.9e-6	4.5e-6	8.74e-6 (-78.32)	5.19e-6 (-5.87)	-9.72e-7 (119.83)	7.14e-6 (-45.72)	6.79e-6 (-38.59)
expansion /	TDE mean (eV)		90.0	133.79 (48.65)	96.79 (7.54)	100.57 (11.75)	111.79 (24.21)	109.85 (22.06)
Threshold Displacement/	TDE max (eV)			249.0	199.70	163.00	220.70	187.70
Energies	TDE min (eV)			54.3	43.00	42.30	45.70	38.30
	TDE 100 (eV)		42.0	54.30 (-29.29)	43.00 (-2.38)	42.30 (-0.71)	45.70 (-8.81)	38.30 (8.81)

IAP stiffening parameters

IAP	r1 (Å)	r2 (Å)	R (Å)	S	S/R (Å ⁻¹)
JW	1.39	2.6	1.4	-150	-107
DND-BN	1.1	2.25	1.3	-230	-177
MS	1.3	2.0	1.45	-137	-95
WSNAP	ZBL	ZBL	1.4	-145	-104
tabGAP	SC	SC	1.27	-223	-176

All IAP have mismatch with experiments / DFT. Whilst DND-BN looks good for defect formation studies, it will be bad for Swelling studies (thermal expansion and elastic constants). Thermal expansion is bad for all IAP except MS, which due to the large error in DB110-111 ends up giving more <110> defects than DND-BN. The DFT and Expt values are obtained from [4,7] and references therein.

CSaransh: AI/ML based algorithm to classify defects https://github.com/haptork/csaransh [Computational Materials Science 172 (2020) 109364]

Post Processing: Obtaining morphology, internal morphology and orientation using Graph Data Structure

\succ Each line is the **node** of a graph

Edges connecting the nodes are made using

- \succ (i) angles between the lines
- \succ (ii) distance between the lines
- >Dijkstra's algorithm to find connected homogeneous regions

SAVI: Graph algorithm to obtain the internal morphology and orientation of defect clusters. [Computational Materials Science 195 (2021) 110474

Mod. Sim. Mater. Science & Engg., 29 (2021) 065015]

80 100 120 140 40 60 0 20 Energy (keV)

Fig.1: Good match with arc-DPA **Inverse correlation with number** of Sub-cascades (Fig.6).

Fig.4: Difference in formation energy between <110> and <111> components decide if rings are formed or not! D 110-111 decides @ formation (see property table above. The values for this parameter are WSNAP > MS=tabGAP >> DND-BN > JW which match the fraction of "@"!

Fig.5: The "||-!" and "||//" clusters are The biggest. Some "||" can be large

||//

Energy (keV)

Fig.2: Clear heirarchy amongst IAP

Fig.3: Cluster classes. Note ascii symbols of each cluster class. **Hexagonal rings have <110> defects**

Fig.6: Number of sub-cascades show an inverse correlation with the number of defects. We use HDBScan algorithm to obtain the number of sub-cascades [Modelling and Simulations in Mater. Sci. & Engg. 32 (5) (2024) 055017]

Conclusions

References

Number of sub-cascades show an inverse correlation with the number of defects (Figs.1 & 6).

Difference in formation energy between <110> and <111> components decide if rings are formed or not! The values for this parameter are WSNAP > MS=tabGAP >> DND-BN > JW. The values for this parameter are WSNAP > MS=tabGAP >> DND-BN > JW which match the fraction of "@" (fig.4 & 14th row big table above)! All IAP which have been trained on liquid configurations have a low value for this parameter and form rings ("@").

of

All IAP have mismatch with experiments / DFT. Whilst DND-BN looks good for defect formation studies, it will be bad for Swelling studies (thermal expansion and elastic constants). Thermal expansion is bad for all IAP except MS, which due to the large error in DB110-111 ends up giving more <110> defects than DND-BN.

1) N. Juslin, B. Wirth, Journal of Nuclear Materials 432 (1) (2013) 61 – 66 2) A. Sand, et al., Journal of Nuclear Materials 470 (2016) 119–127. 3) C. Björkas, et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267 (18) (2009) 3204 – 3208. 4) M. A. Wood, A. P. Thompson, (2017) arXiv:1702.07042. 5) J. Byggmästar, et al., Physical Review B 104 (10).

6) A. P. Thompson, et al., Comp. Phys. Comm. 271 (2022) 108171.

7) J. Byggmästar, et al., (2020) arxiv:2006.14365v2

Viewer Comments / Suggestions / Contacts