

Interface-induced enhanced deuterium plasma-driven permeation in chemical vapor deposition tungsten-copper composite

Yiwen Sun¹, **Long Cheng¹**, Xuechun Li², Caibin Liu², Yifan Li¹, Yuhao Li¹, Jonathan Mougenot³, Haodong Liu³, Di Hu¹, Sijie Hao¹, Yue Yuan¹, Haishan Zhou², Hongbo Zhou¹, and Guang-Hong Lu¹

1 School of Physics, Beihang University, Beijing, 100191, China

2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China

3 Universit'e Sorbonne Paris Nord, Laboratoire des Sciences des Proc'ed'es et des Mat'eriaux, LSPM, CNRS, UPR 3407, F-93430, Villetaneuse, France

7th International Workshop on Models and Data for Plasma-Material Interactions in Fusion Devices | 2025 May 26-28 | Vienna, Austria by Dr. Long CHENG, Beihang University | 2025 May 26 | Email: LCheng@buaa.edu.cn

Background: Hydrogen isotope transport in plasma-facing component

In future fusion devices, the design of robust plasma-facing components (PFCs) is essential

- Tungsten (W) is considered as the most probable plasma-facing material (PFM) due to its high melting point, high sputtering threshold and low fuel inventory
- Copper-chromium-zirconium (CuCrZr) alloy is commonly selected as the heat-sink material due to its high ductility and favorable thermal conductivity
- To mitigate the high mechanical stress in-between W and CuCrZr, a copper (Cu) interlayer is employed

BUAA

Background: Hydrogen isotope transport in plasma-facing components

- During the operation of tokamaks, PFCs are directly exposed to the edge plasma, leading to a series of plasma-material interactions. The implanted hydrogen isotope (HI) can diffuse into and permeate through the bulk, then penetrate into the coolant, potentially forming radioactive tritiated water which may impact the self-sustaining cycle of tritium.
- Although Cu is commonly used as an interlayer in PFCs and directly bonded to W, experimental studies on D permeation in W/Cu composite remain limited

BUAA

Purpose

- Investigate deuterium transport in W-Cu composite, including diffusion, recombination and permeation.
- Understand the difference of deuterium transport in between W-Cu composite, bare W and bare Cu under identical plasma-driven permeation conditions

Expected Results

- D diffusion coefficient of W-Cu composite should fall between that of bare W and bare Cu
- Deuterium permeation flux in W-Cu composite should be lower than in bare Cu due to the lower solubility of H in W

- In this work, three types of materials were used, including CVD-W/Cu composite, bare CVD-W (with >99.9999 wt% purity) and bare Cu (with >99.99 wt% purity)
- Deuterium plasma-driven permeation experiments were carried out in the PREFACE facility at the Institute of Plasma Physics, Chinese Academy of Sciences
- Scanning electron microscope (SEM), electron backscatter diffraction (EBSD), energy dispersive spectrometer (EDS) and Ga focused ion beam (FIB) were measured at Beihang University
- A typical W(110)/Cu(111) interface structure is fabricated in DFT calculations, using the Vienna ab initio Simulation Package (VASP)17
- D permeation in samples was analyzed using TMAP7

Sample	Size (µm)	Temperature (K))	Plasma flux (m ⁻² s ⁻¹)
CVD-W/Cu	Ф25 *250	741	700	660	/	
Cu	Ф20*172	742	700	620	587	$\sim 3 \times 10^{20}$
CVD-W	Ф20*100	790	742	695	643	

Sun Y., Cheng L., et al., Nucl. Fusion 65 (2025) 066003

Cross-section morphology of CVD-W/Cu interface

- CVD-W/Cu was produced using chemical vapor deposition, which has advantages of high purity, high density, excellent thermal conductivity, and preferred orientation along <001>.
- The growth direction of W grains is parallel to the normal direction of the exposure surface, exhibiting a columnar grain structure.

W and Cu distribution near the CVD-W/Cu interface

- In the CVD-W layer, the average Cu atomic concentration is 6.6 at.% within ~35 µm from the interface, and decreases to 1.1 at.% at ~35 µm-65 µm from the interface.
 - In the Cu layer, only a trace amount of W (0.5 at%) was detected within ~10 μm from the interface, with no W detected outside this region.

BUAA

Transient PDP flux

- Normalized permeation curves for 250 μ m thick CVD-W/Cu, 100 μ m thick CVD-W and 172 μ m thick Cu at different temperatures.
- Break-through time in the W/Cu composite is longer than in bare W.

D diffusion coefficients and front surface recombination coefficient **BUAA**

Steady state permeation flux

Steady state permeation flux as a function of temperature in CVD-W/Cu, CVD-W and Cu

- In CVD-W and Cu, the steady state permeation flux is converted by assuming a thickness of 75 µm and 175 µm, respectively.
- Notably, the steady state permeation flux in CVD-W/Cu is higher than that in bare Cu within the experimental temperature range.

"Permeation flux in W-Cu composite should be lower than in bare Cu due to the lower solubility of H in W"

TMAP Simulation of PDP experiments

Input parameters	Values						
Temperature	741 K						
Materials	W	Cu-entry region of W	Cu				
Length	10 µm	65 μm	175 µm				
Solubility	$1.87 \times 10^{24} exp(\frac{-1.04 \ [eV]}{k_b T})$	$1.87 \times 10^{24} exp(\frac{-0.6[eV]}{k_bT})$	$3.14 \times 10^{24} exp(\frac{-0.57 \ [eV]}{k_b T})$				
Diffusion coefficient	$1.9 \times 10^{-7} ex$	$1.3 \times 10^{-8} exp(\frac{-0.27 \ [eV]}{k_b T})$					
Recombination coefficient	$4.5 \times 10^{-47} exp(\frac{2.30 [eV]}{k_b T})$	/	$3.8 \times 10^{-38} exp(\frac{1.58 [eV]}{k_b T})$				
Implantation depth	1.6 nm	/	3 nm				
Implantation coefficient	0.6	/	0.9				

• The diffusion coefficients and recombination coefficients are taken from this work, as obtained in the experimental temperature range of ~600 K-800 K.

TMAP Simulation of PDP experiments

• Comparison between the experimental and simulated permeation curves in 250 μ m thick CVD-W/Cu, 100 μ m thick CVD-W and 172 μ m thick Cu at 741 K.

TMAP Simulation of PDP experiments

- Simulated solute D concentration distribution along the sample thickness after reaching steady state permeation at 741 K.
- Notably, because of the lower D solution energy in the Cu-entry region of W (segment2), the D mobile concentration within the W layer exhibits a discontinuity, with an abrupt increase in segment2.
- The substantial D accumulation in segment2 drives more D atoms diffusing into the Cu layer, thereby enhancing the permeation flux in W/Cu composite compared to bare Cu.

H solution energies in W/Cu composite

Calculated H solution energies (with zero-point energy) in the W/Cu composite using DFT

In region I and region II, H atoms tend to dissolve near Cu atoms, corresponding to H solution energies of 0.61 eV and 0.68 eV, respectively, which are lower than the value in the W bulk.

H solution energies in W/Cu composite

Calculated H solution energies (with zero-point energy) in the W/Cu composite using DFT

- In region I and region II, H atoms tend to dissolve near Cu atoms, corresponding to H solution energies of 0.61 eV and 0.68 eV, respectively, which are lower than the value in the W bulk.
- Actually, Cu atoms in W are possibly in agglomerated states rather than being uniformly distributed. When the number of Cu atoms is less than two, the H solution energy is ~0.68 eV. As the number of aggregated Cu atoms exceeds three, the H solution energy decreases to ≤ 0.23 eV. This reduction arises from the formation of tetrahedral structures composed of two Cu atoms and two W atoms, which enhance H atoms solution.
- The solution energy set in TMAP represents the average value for a segment. The solution energy of 0.6 eV set in the Cu-entry region of W in TMAP accounts for the combination of W, uniformly distributed Cu and the aggregated states of Cu.

Modified analytical solution for steady state permeation flux in multi-layer composite BUAA

16

- A series of D PDP experiments were conducted on CVD-W/Cu, CVD-W and Cu in the temperature range of ~600 K-800 K.
- Under the identical experimental conditions, an unexpected result was found that the steady state permeation flux in CVD-W/Cu was higher than that in bare Cu. Based on the rate equation simulations and density functional theory calculations, it is suggested that the reduction in H solution energy in the Cu-entry region of CVD-W led to substantial D accumulation near the interface, enhancing the steady state permeation flux in CVD-W/Cu compared to bare Cu.
- Furthermore, an analytical solution for the steady state permeation flux in a generalized three-layer composite was derived using a modified analytical equation for the fast evaluation of steady state permeation flux.

Implications of the work

- The accumulation of HI near the interface could potentially weaken the W/Cu bonding strength, increasing the risk of crack formation at the interface.
- The "realistic" state of interface may lead to modification of tritium transport modelling for ITER.

北京航空航天大学 沙河校区

North Campus of Beihang University at Shahe

Thanks for your attention !

Comparison between the experimental and TMAP simulated permeation curves **BUAA**

199