
Introduction to the Nuclear Data Section

Paraskevi (Vivian) Dimitriou
Nuclear Data Section
Division of Physical and Chemical Sciences
International Atomic Energy Agency

International Atomic Energy Agency

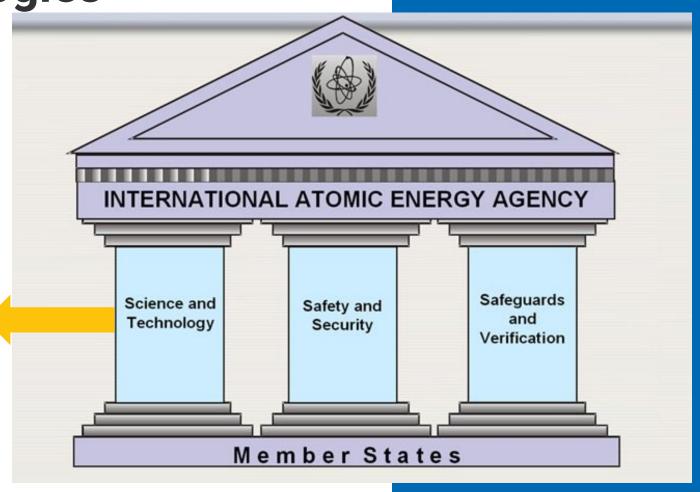
Founded in 1957: world centre for cooperation in the nuclear field

Promotes the safe, secure and peaceful use of nuclear technologies

Total of 179 Member States

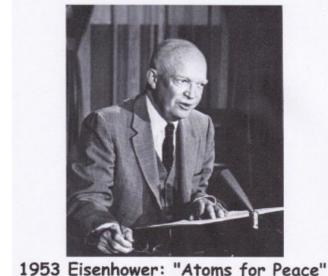
Over 2500 personnel

safe, secure and peaceful application of nuclear technologies


Nuclear Data

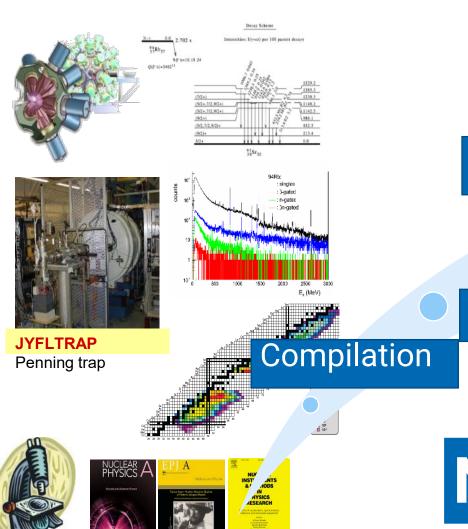
Physics

Radioisotope Production and Industrial Applications


Isotope Hydrology

caland Ca

How did it all start?


- Eisenhower's historical speech "Atoms for Peace" on 8 December 1953
- First International Conference on Peaceful Uses of Atomic Energy, Geneva, 1955
- IAEA is founded in 1957
- UK, USSR and US discuss making nuclear data public at Geneva conferences 1955, 1958
- Carl Westcott was hired in 1963 to oversee the Nuclear Data Program at the Agency
- Nuclear Data Section is created in 1965 -International Nuclear Data Committee advises on promoting research and exchange of data among member states

1953 Eisenhower: "Atoms for Peace"

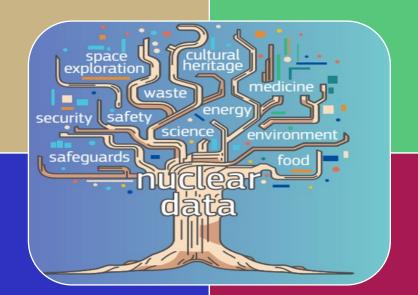
Nuclear physics research: experiment + theory

Verification/ Validation

Evaluation

Nuclear Data

Applications:


organised complete recommended traceable easily retrievable

International Networks

- Nuclear Reactions EXFOR→ NRDC
- Nuclear Structure and Decay ENSDF → NSDD
- Nuclear Reactions Evaluation ENDF/B, JEFF, → INDEN

Coordinated Research Projects

- Beta-delayed neutrons
- Photonuclear data and Photon Strength Functions
- Fission Yields
- Nuclear Level Densities new

Meetings

- (alpha,n) reactions for basic and applied research
- Nuclear data needs for Reactor Antineutrino Spectra
- Nuclear data needs for medical applications
- Thermal capture and gamma emission
- Neutron capture reactions on short-lived nuclei new

Training

- Joint IAEA-ICTP workshops on Nuclear Structure and Decay Data
- Joint IAEA-ICTP Workshop on Nuclear Reaction Data
- IAEA Workshops on EXFOR Compilation
- IAEA Workshop on EMPIRE code/Talys code

Networks

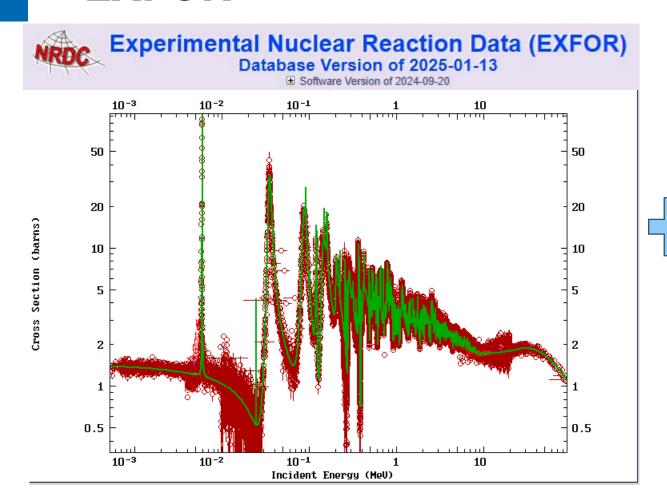
Nuclear Reaction Data Centers

Experimental Nuclear Reaction Data

EXFOR

Nuclear Structure and Decay Data evaluators

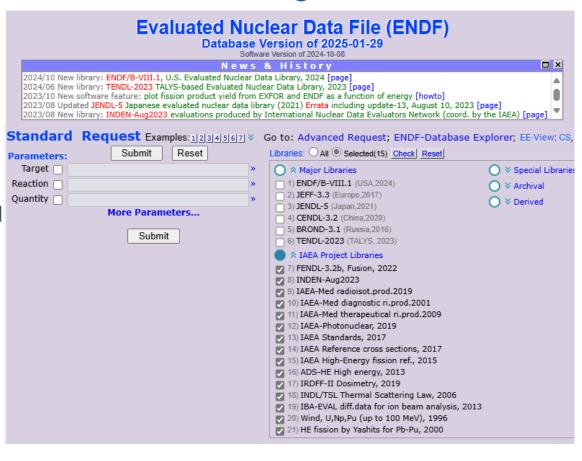
Recommended Nuclear Structure and Decay Data


ENSDF

International Nuclear Data Evaluation Network

Recommended Nuclear Reaction Data

ENDF

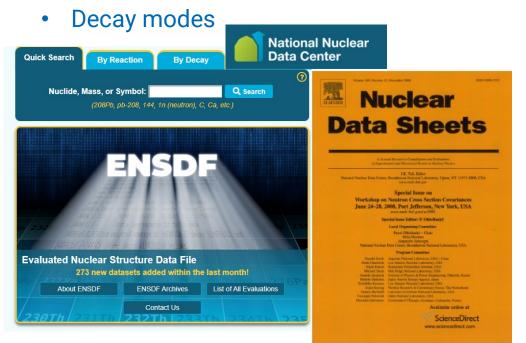

EXFOR

EXFOR is a unique and comprehensive low- and intermediate-energy nuclear reaction database

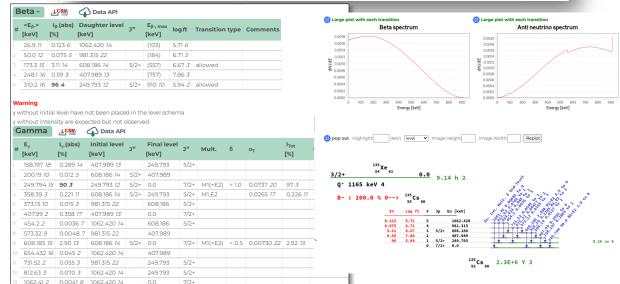
nds.iaea.org/exfor

nds.iaea.org/endf

As of September 2024 EXFOR includes:


25,096 experiments, 167,425 data tables, 184,837 datasets, and 20,348,339 data points.

Live Chart (ENSDF)


nds.iaea.org/livechart

Evaluated Nuclear Structure Data File: Unique and comprehensive database of all measured nuclear structure properties

- Nuclear levels, energies, spins and parities
- Gamma energies and intensities
- Multipolarities, mixing ratios, and conversion electrons

Isotope Browser – for Mobile Devices

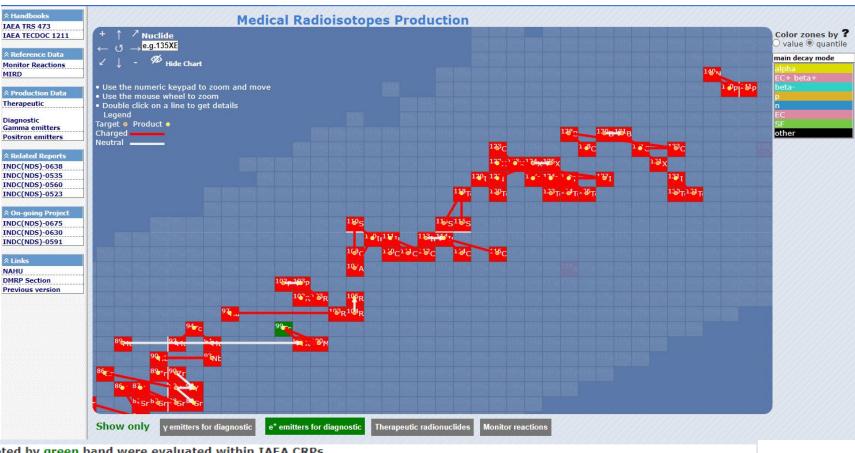
- App for Mobile Devices
 - Properties of over **4,000 isotopes**
 - No internet connection needed

Available for both

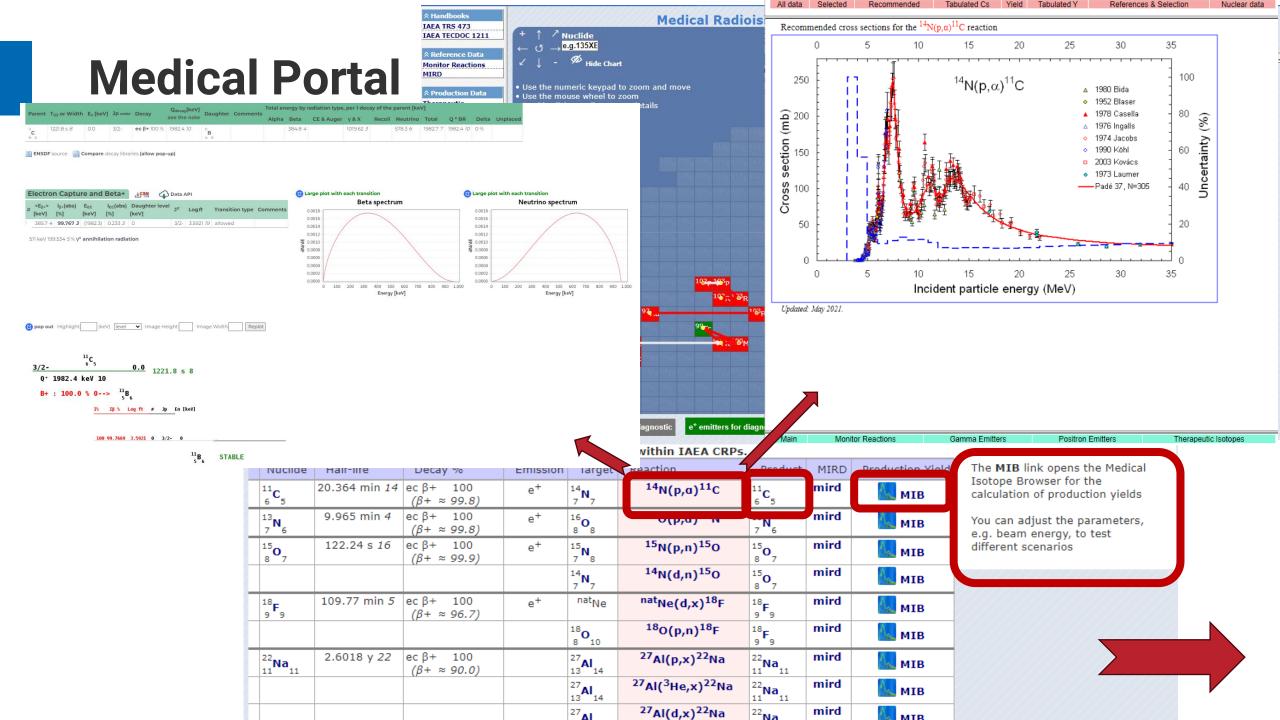
- Android
- Apple

• 11 languages (Arabic, Chinese, English, French, Spanish, Russian, Japanese, Slovenian, Italian, Trad. Chinese, German)

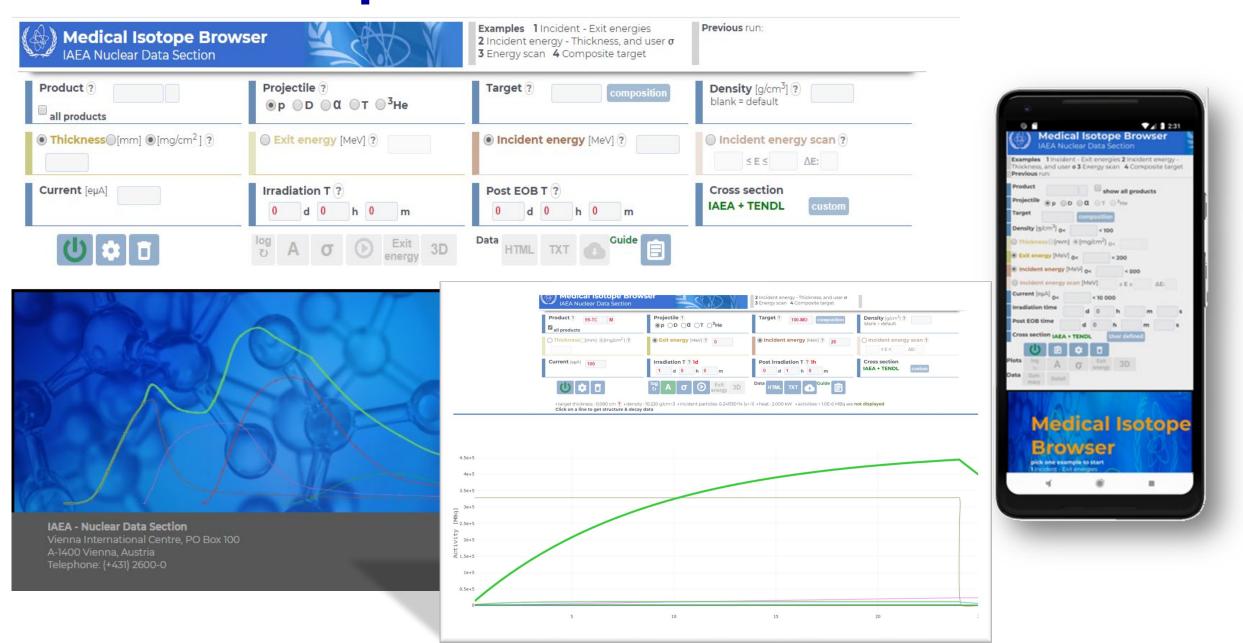
Regularly updated with new features and data



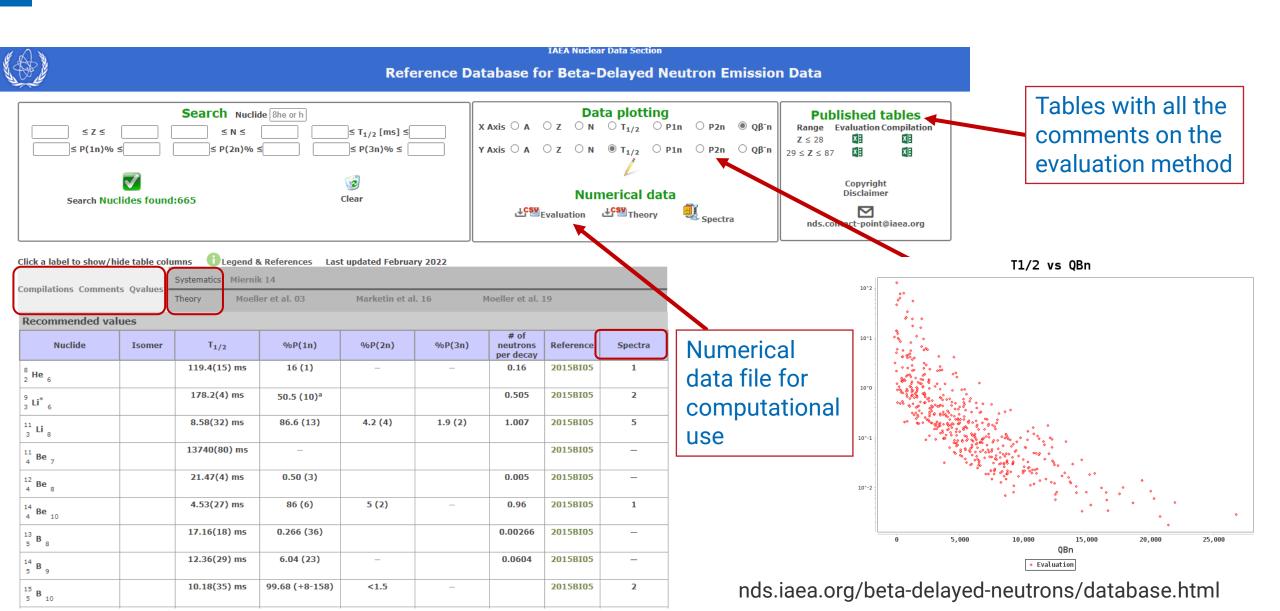
Medical Portal


nds.iaea.org/medportal

Decay data	a of nuclides d	enoted by green	band were	evaluate	ed within IAEA CRPs			
Nuclide	Half-life	Decay %	Emission	Target	Poaction	Product	MIRD	Production Yield
11 C 5	20.364 min 14	ec β+ 100 $(β+ ≈ 99.8)$	e ⁺	¹⁴ ₇ N ₇	¹⁴ N(p,a) ¹¹ C	¹¹ ₆ C ₅	mird	🂹 мів
¹³ N ₆	9.965 min 4	ec β+ 100 $(β+ ≈ 99.8)$	e ⁺	16 8 8	O(p/d) N	7 6	mird	🂹 МІВ
15 8 7	122.24 s 16	ec β+ 100 $(β+ ≈ 99.9)$	e ⁺	¹⁵ N ₈	¹⁵ N(p,n) ¹⁵ O	15 0	mird	🌉 мів
				¹⁴ ₇ N ₇	¹⁴ N(d,n) ¹⁵ O	15 8 0	mird	💹 МІВ
¹⁸ F ₉	109.77 min <i>5</i>	ec β+ 100 $(β+ ≈ 96.7)$	e ⁺	^{nat} Ne	^{nat} Ne(d,x) ¹⁸ F	¹⁸ F ₉	mird	💹 мів
				¹⁸ o	¹⁸ O(p,n) ¹⁸ F	¹⁸ F ₉	mird	💹 мів
22 Na	2.6018 y <i>22</i>	ec β+ 100 $(β+ ≈ 90.0)$		²⁷ Al	²⁷ Al(p,x) ²² Na	²² Na ₁₁ Na	mird	💹 мів
				²⁷ AI	²⁷ Al(³ He,x) ²² Na	²² Na ₁₁	mird	💹 мів
				²⁷ AI	²⁷ Al(d,x) ²² Na	²² Na	mird	MIR.

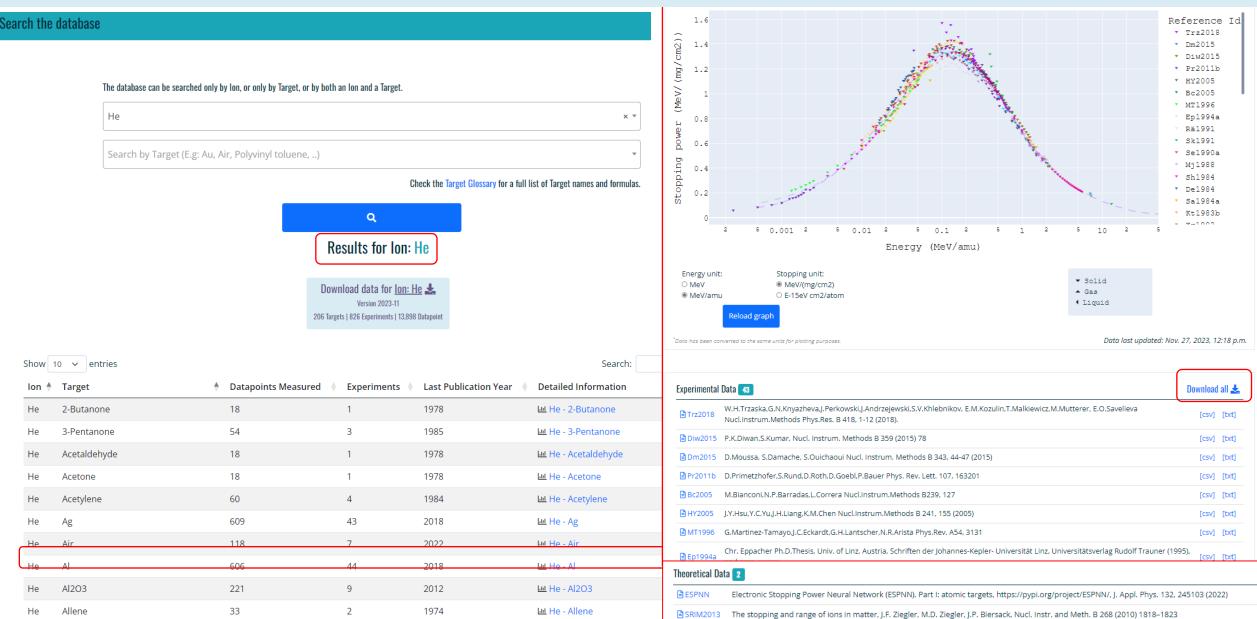

The MIB link opens the Medical Isotope Browser for the calculation of production yields

You can adjust the parameters, e.g. beam energy, to test different scenarios



Medical Isotope Browser

nds.iaea.org/mib



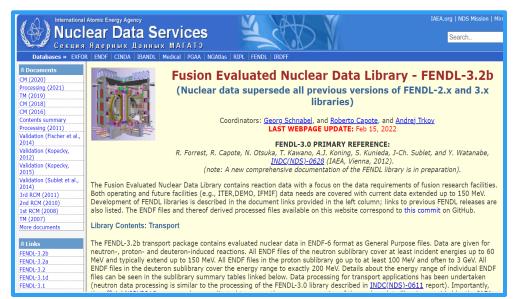
Beta-delayed neutron database

Stopping Power

This is the new website for the Stopping Power Database. The legacy website is still available for a limited time here.

Databases and Web Applications

Application	Content
Live Chart of Nuclides/Isotope Browser Mobile App	Recommended nuclear structure and decay data (ENSDF), graphical interface, Pyhton API, mobile app
Atomic Mass Data (AME & Nubase)	Basic nuclear properties (masses, spins, parities, half-lives, isomers, decay modes)
Nuclear Electromagnetic Moments	Compiled and evaluated experimental nuclear magnetic and electric quadrupole moments
EXFOR	Experimental nuclear reaction database
Neutron Standards	Neutron cross-section standards
Photonuclear Data Library	Recommended photonuclear reaction data
ENDF	Interface to evaluated nuclear reaction data: ENDF/B, JEFF, JENDL, CENDL, ROSFOND
Neutron Activation Analysis	Neutron activation and Prompt-Gamma Activation Analysis (PGAA) database and Evaluated Gamma Activation File (EGAF) for non-destructive analytical methods
Ion Beam Nuclear Data Library (IBANL)	Experimental charged-induced cross sections for ion beam analytical methods
Electronic Stopping Power of Ions in Matter	Compilation of stopping power experiments
International Reactor Dosimetry and Fusion File (IRDFF)	Reaction cross sections, fission yields and decay data for dosimetry applications
Beta-Delayed Neutron Emission Database	Experimental beta-decay half-lives, beta-delayed neutron emission probabilities, and emission spectra
Compilation of Nuclear Data Experiments for Radiation Characterisation (CoNDERC)	Decay Heat, incident particle spectra used world-wide, origen Input for shielding calculation, thermal resonane data
Medical Radioisotopes Production Portal	Therapeutic Radionuclides, Gamma Emitters, Positron Emitters
Medical Isotope Browser	Medical radioisotopes production simulator
International Database of Reference Gamma Spectra (IDB)	In collaboration with IAEA-SG
IAEA Handbook of Nuclear Data for Safeguards	A set of recommended nuclear data for safeguard (decay data, thermal neutron capture cross section, resonance integrals, fission product yieldetc)


Meetings - Reports

1NDC(NDS)-0903	The Upbend in the (n,gamma) ⁵⁷ Fe Photon Strength Function Data Revisited	J. Kopecky, I. Tomandl	Aug 2024
1NDC(NDS)-0902	International Network of Nuclear Reaction Data Centres Summary report of the Technical Meeting, 14-17 May 2024, Vienna, Austria	Naohiko Otuka and Boris Pritychenko	Aug 2024
1NDC(NDS)-0901	International Network of Nuclear Structure and Decay Data (NSDD) Evaluators Summary Report of the 25th Technical Meeting, 15-19 April 2024, Vienna, Austria	J. Chen, A. Negret, P. Dimitriou	Dec 2024
1NDC(NDS)-0900	Updating of the ENDF/B-VIII.1b2 Candidate Evaluations with Reaction Cross Sections from IRDFF-II	A. Trkov, R. Capote	Feb 2024

1	11-15 November 2024	S. Okumura and A. Koning	TM on Nuclear Data Retrieval, Dissemination and Data Portals	Webpage
2	7-11 October 2024	R. Capote Noy	TM on Thermal Capture and Gamma Emission	Webpage
3	8-12 July 2024	P. Dimitriou	TM on Compound Nuclear Reactions and Related Topics (CNR*24)	Webpage
4	14-17 May 2024	N.Otsuka	TM of the International Network of Nuclear Reaction Data Centres (NRDC)	Webpage
5	15-19 April 2024	P. Dimitriou	25th TM of the Nuclear Structure and Decay Data (NSDD) Network	Webpage
6	16-18 January 2024	P. Dimitriou	CM on Inter-comparison of PIGE codes (Phase II): depth-profiling	Webpage
7	15-18 January 2024	S. Okumura	CM on Information Exchange on Developments and Operations of Nuclear Data Dissemination Services	
8	18-21 December 2023	G. Schnabel	CM of INDEN on Structural Materials (VI)	Webpage
9	27 November - 1 December 2023	P. Dimitriou	TM on (alpha,n) Reaction Nuclear Data Evaluations and Data Needs	Webpage
10	20-23 November 2023	R. Capote Noy	TM of of INDEN on Nuclear Data Evaluation of Fissile Actinides	Webpage
11	30 October - 2 November 2023	G. Schnabel	CM on Further Development of the Fusion Evaluated Nuclear Data Library (FENDL)	Webpage
12	23-25 October 2023	R. Capote Noy	CM on Thermal Capture and Gamma Emission	Webpage
13	23-25 October 2023	P. Dimitriou	TM on Decay Data for Monitoring Applications	INDC(NDS)-0890
14	9-13 October 2023	G. Schnabel	TM on Neutron Data Standards	Webpage
15	9-11 October 2023	P. Dimitriou	CM on the Evaluation of Photon Strength Function Data	Webpage
16	20-22 September 2023	R. Capote Noy	CM on the Improvement of Major Actinide Evaluations	Webpage
17	20 August 1 September 2022	D. Dimitriou	CM of INDEN on Light Floragets (V)	Webpage

NDS Fusion Databases and Networks

FENDL Fusion Evaluated Nuclear Data Library

https://nds.iaea.org/fendl/

Atomic and Molecular Databases and Networks

AMBDAS

ALADDIN

CollisionDB

CascadesDB

DefectDB

Data Centres Network
Code Centres Network
Global Network for the Atomic
and Molecular Physics of
Plasmas

https://amdis.iaea.org/

• JENDL-5 • ENDF/B-VIII.0

News » Pointwise2020//TENDL-2019

Data Explorer - Nuclear Reaction Data Explorer [page]

TALYS-2.0 - Nuclear reaction model code and related packages [page]

IDB - An International Database of Reference Gamma Spectra [page]

Stopping Power - Electronic Stopping Power of Matter for Ions [page]

Web-API for EXFOR/ENDF/IBANDL - software search/download for EXFOR/ENDF/IBANDL [page]

Main Reaction Data | Structure & Decay | by Applications | Doc & Codes If Index If Events If Links If News

lass Data

-delayed neutrons

harged particle reference cross section

Decay Data Library for

CoNDERC DICEBOX DROSG-2000

Actinides

MPIRE-3.2 NDF Archive

F Retrieval

-6 Codes

Format

EE-View

DXS

EXFOR

Experimental nuclear reaction data

LiveChart of Nuclides

Interactive Chart of Nuclides Mobile App: Isotope Browser

CINDA

Nuclear reaction bibliography

ENDF

Evaluated nuclear reaction libraries

ENSDF

evaluated nuclear structure and decay data (+XUNDL) **

NSR

Nuclear Science References *

NuDa	t-c
selecte	d e
atternation	

evaluated nuclear structure data **

RIPL reference parameters for nuclear model calculations

TBANDI

Ion Beam Analysis Nuclear Data Library

Charged particle reference cross section

Beam monitor reactions

PGAA

Prompt gamma rays from neutron capture

FENDL

Fusion Evaluated Nuclear Data Library

Photonuclear

- IAEA Photonuclear Data Library, 2019 EPICS Electron & Photon Interaction Data, 2017

IRDFF-II

International Reactor Dosimetry and Fusion

NAA

Neutron Activation Analysis Portal

Safeguards Data

Last updated: May 2021

Medical Portal

Medical Portal

Standards

- Neutron cross-sections, 2017
- Decay data, 2005

*Database at the IAEA, Vienna

**Database at the US NNDC

IAEA Nuclear Data Section

Nuclear Structure & Decay Data

International Network of Nuclear Data Evaluator

Technical Document INDC Rep

Meetings rkshops

Newsletters Coordinated Research Projects

Nuclear Reaction Data Center Network

Network

Nuclear data needs for reactor antineutrino research and applications

Purpose:

- Bring together experts from different fields associated with reactor antineutrino research and applications
- Discuss cross-cutting needs in measurements, models-methods, nuclear data, reactor data
- Promote joint analyses, standardization of information, open and easy access to nuclear data and web applications
- Recommend priorities and future a

1st IAEA Technical Meeting

23-26 April 2019, IAEA; Summary report INDC(NDS)-0786

In person only - 37 participants – 11 countries

- Neutrino experiments: anomalies and sterile hypothesis; uncertainties-systematicnon-linearity; short vs long-baseline exps; agreement and discrepancies; perspectives
- Conversion method: uncertainties of integral beta spectra; impact of forbidden transitions; impact of weak magnetism; recommendations for uncertainties; corrections; new measurements
- Summation method: impact of latest decay data measurements; uncertainties from experiment and theory; uncertainties in TAGS data; evaluated nuclear data libraries
- Reactor monitoring: data needs and perspectives
- Recommendations: what neutrino experimental data to trust; what nuclear models and corrections to adopt; what nuclear data to use; what needs to be done to solve the outstanding issues;

Antineutrino spectra and their applications

Summary of the Technical Meeting IAEA Headquarters, Vienna, Austria 23-26 April 2019

Prepared by

M. Fallot
<u>Laboratoire</u> SUBATECH-University of Nantes
Nantes, France

B. Littlejohn Illinois Institute of Technology Chicago, USA

> Paraskevi Dimitriou IAEA Vienna, Austria

2nd IAEA Technical Meeting

16 - 20 January 2023, IAEA

In person only - 56 participants/18 in person – 8 countries

Purpose:

- follow up on progress
- revise status and data needs
- address data preservation and dissemination
- needs for coordination working group
- Summary report: draft available on https://conferences.iaea.org/event/402/

2nd IAEA TM: conclusions

Basic science goals: high precision data - almost there

Applications: identify use cases — R&D needed — resources limited

Modeling: improve nuclear theory (beta decay) – validation by new integral data – open computational tools

Nuclear data: more TAGS – uncertainty quantification/covariances – beta spectra – beta-delayed neutrons

Data preservation and dissemination: standardisation of information – centralised repository

Working Group (under the auspices of the IAEA)

3rd IAEA Hosted TM

7 - 11 April 2025, Seoul National University, Korea

52 participants – 23 in person - 11 countries

Main goals:

- Review status of reactor antineutrino experiments new and completed
- Review status of reactor antineutrino developments for applications
- Review status of calculation methods (Summation method, Conversion method)
- Assess status and needs for nuclear theory and nuclear data
- Assess needs for standardization of information, central repositories
- Review needs for coordination (Working Group or IAEA meetings etc)

Talks

Experiments

RENO, RENE, NEON

JUNO, TAO

PROSPECT

DOUBLE CHOOZ, Antimatter-

Ocloud

DANSS

CONUS+

ANGRA

Models/methods

SUMMATION METHOD

NEW MODEL GEO-NEUTRINOS

NUCLEAR THEORY

CONFLUX

Nuclear data

BETA DECAY – TAGS

BETA SPECTRA

FISSION YIELDS

Thank you!