

New calculation of the geo-neutrino energy spectrum and its implication

Yu-Feng Li Institute of High Energy Physics, Beijing liyufeng@ihep.ac.cn 3rd IAEA TM on Nuclear Data Needs for Antineutrino Spectra 7-11 April 2025, Seoul Based on arXiv: 2412.07711 [YFL, Xin]

Introduction

- 1. Geoneutrino spectrum is the basis for geoneutrino sensitivity study
- 2. Current flux : Enomoto's model

IBD cross section Predicted signals (rate and shape)

Spectral impact to analysis
 Observed data: KamLAND (2022), Borexino (2020)
 Predicted data: JUNO

Geoneutrinos: Introduction

Geoneutrino

- The intersection of particle physics and geophysics
- An independent method to study the matter composition deep within the Earth

- Crust: high U & Th
- CLM (Continental Lithospheric Mantle): relatively low U & Th
- Mantle: very low U & Th, large volume

Geoneutrinos: Introduction

What is the radiogenic contribution to terrestrial heat production?

How much U and Th in the crust and in the mantle?

What is the distribution of radioactivity in the mantle?

What is hidden in the Earth's core? (geo-reactors...)

What are the building blocks (chondritic meteorites) that formed the Earth?

<u>From</u> <u>Mantovani</u>

Geoneutrino Observation

Observation in KamLAND & Borexino

KamLAND (2022)

- Liquid scintillator of 1 kon
- 18 years ~ 170 geo-neutrinos
- Precision
 - ~ 36% for 238 U
 - $\sim 53\%$ for ²³²Th

Geophysical Research Letters, 49, e2022GL099566

Borexino (2020)

- Liquid scintillator of 0.3 kon
- 10 years ~ 50 geo-neutrinos
- Precision
 - ~ 53% for ^{238}U
 - ~ 55% for 232 Th

Phys. Rev. D 101, 012009 (2020)

Motivation for precise spectral calculation

Liquid scintillator detectors lack of directionality

→The energy spectral feature of both geoneutrinos and reactor neutrinos is important !

2204.13249

The new geoneutrino flux model (Li & Xin, arXiv: 2412.07711):

Summation model with latest database, higher order corrections and forbidden decays

 $^{232}\text{Th}\rightarrow^{206}\text{Pb}$

70 (3)

currently used in most of studies

https://www.awa.tohoku.ac.jp/~sanshi ro/research/geoneutrino/spectrum/

The extra beta branches are concentrated in the low-energy region, less than the IBD threshold.

84 (3)

Geo-neutrino flux: visible transitions

$i \rightarrow j$	R_{ij}	Q-value [keV]	transition number
$^{234}\text{Th} \rightarrow ^{234}\text{Pa}$	1.0000	199.5	5 (0)
$^{234}\mathrm{Pa^m} \rightarrow ^{234}\mathrm{U}$	0.9984	2290.0	24 (1)
$^{214}\mathrm{Pb} ightarrow ^{214}\mathrm{Bi}$	0.9998	1018.0	7 (0)
$^{214}\text{Bi} \rightarrow ^{214}\text{Po}$	0.9998	3269.0	70 (6)
$^{210}\mathrm{Pb} ightarrow ^{210}\mathrm{Bi}$	1.0000	63.5	2 (0)
$^{210}\text{Bi} \rightarrow ^{210}\text{Po}$	0.9999	1161.5	1 (0)
$^{234}\mathrm{Pa} \rightarrow ^{234}\mathrm{U}$	0.0016	1247	39 (0)
$^{218}\text{Po} \rightarrow ^{218}\text{At}$	0.0002	264.0	1 (0)
$^{206}\mathrm{Tl} ightarrow ^{206}\mathrm{Pb}$	0.0001	1532.3	3 (0)
$^{210}\mathrm{Tl} \rightarrow ^{210}\mathrm{Pb}$	0.0002	4386.0	7 (5)

TABLE IV: Beta decay transitions in the ²³⁸U chain. For each transition, the weight of the production ratio R_{ij} , the Q-value, and the number of decay branches are provided. The last column lists the total number of decay branches as well as the effective decay branches that can be detected by the IBD reaction.

$i \rightarrow j$	R_{ij}	Q-value [keV]	transition number
228 Ra $\rightarrow ^{228}$ Ac	1.0000	39.5	4 (0)
$^{228}Ac \rightarrow ^{228}Th$	1.0000	2076.0	55 (2)
$^{212}\mathrm{Pb} \rightarrow ^{212}\mathrm{Bi}$	1.0000	569.1	3 (0)
$^{212}\text{Bi} \rightarrow ^{212}\text{Po}$	0.6406	2251.5	7 (1)
$^{208}\mathrm{Tl} \rightarrow ^{208}\mathrm{Pb}$	0.3594	1801.3	15 (0)

TABLE V: Beta decay transitions in the 232 Th chain. For each transition, the weight of the production ratio R_{ij} , the Q-value, and the number of decay branches are provided. The last column lists the total number of decay branches as well as the effective decay branches that can be detected by the IBD reaction.

Geo-neutrino flux: visible branches

decay chains	$i \rightarrow j$	$R_{i,j}$	Q-value [keV]	$I_{ij,k}$	$\delta I_{ij,k}$	Transition type
	$^{234}\mathrm{Pa^m} \rightarrow ^{234}\mathrm{U}$	1.0000	2290.0	0.9757	0.0004	1^{st} forbidden $(0^- \rightarrow 0^+)$
228			3269.0	0.192	0.004	1^{st} forbidden $(1^- \rightarrow 0^+)$
2380			2660.0	0.0055	0.0008	$1^{\rm st}$ forbidden $(1^- \rightarrow 2^+)$
	$^{214}\mathrm{Bi} ightarrow ^{214}\mathrm{Po}$	0.9998	2254.0	0.00079	0.00013	$3^{\rm rd}$ forbidden $(1^- \rightarrow 4^+)$
			1994.0	0.0006	0.0004	2^{nd} forbidden $(1^- \rightarrow 3^-)$
			1891.0	0.0722	0.0008	1^{st} forbidden $(1^- \rightarrow 2^+)$
			1854.0	0.009	0.0005	1^{st} forbidden $(1^- \rightarrow 0^+)$
			4386.0	0.20	Unknown	Allowed $(5^+ \rightarrow 4^+)$
	210		4210.0	0.30	0.06	$2^{\rm rd}$ forbidden $(5^+ \rightarrow 8^+)$
	$^{210}\text{Tl} \rightarrow ^{210}\text{Pb}$	0.0002	2413.0	0.10	0.03	$2^{\rm rd}$ forbidden $(5^+ \rightarrow 2^+)$
			2020.0	0.10	0.03	Allowed $(5^+ \rightarrow 4^+)$
			1860.0	0.24	0.05	Unknown
	$^{212}\text{Bi} \rightarrow ^{212}\text{Po}$	0.6406	2251.5	0.8643	0.0012	$1^{\rm st}$ forbidden $(1^- \rightarrow 0^+)$
²³² Th	228 Ac > 228 Th	1.0000	2076.0	0.07	0.05	Allowed $(3^+ \rightarrow 2^+)$
	$AC \rightarrow 111$	1.0000	1947.0	0.006	0.005	Allowed $(3^+ \rightarrow 4^+)$

TABLE VI: Effective transitions above the IBD threshold in the decay chains of ²³⁸U and ²³²Th. In addition to the R_{ij} and Q-values provided in Table [V] and V, the intensity $I_{ij,k}$, its uncertainty $\delta I_{ij,k}$, and the transition type are also listed. These values are obtained from the latest ENSDF nuclear database [23].

Geo-neutrino flux update: decomposition

Finite size, radiative correction, and weak magnetism

Corrections from:Forbidden decays (shape factor)

Classification	ΛI^{π} Operator	Sha	WM correction $\delta_{m}(F)$		
Classification		Operator	Plane wave approximation	Exact relativistic calculation	W W Concession $\sigma_{WM}(E_e)$
Allowed GT	1^{+}	$\Sigma\equiv \sigma\tau$	1	1	$\frac{2}{3} \frac{\mu_{\nu} - 1/2}{M_N g_A} (E_e \beta^2 - E_{\nu})$
Nonunique first forbidden GT	0^{-}	$[\Sigma, r]^{0-}$	$p_e^2+E_\nu^2+2\beta^2 E_\nu E_e$	$E_{\nu}^2 + p_e^2 \tilde{F}_{p_{1/2}} + 2 p_e E_{\nu} \tilde{F}_{sp_{1/2}}$	0
Nonunique first forbidden GT	1^{-}	$[\Sigma, r]^{1-}$	$p_e^2 + E_\nu^2 - \tfrac{4}{3}\beta^2 E_\nu E_e$	$E_{\nu}^2+\frac{2}{3}p_e^2\tilde{F}_{p_{1/2}}+\frac{1}{3}p_e^2\tilde{F}_{p_{3/2}}-\frac{4}{3}p_eE_{\nu}\tilde{F}_{sp_{1/2}}$	$\frac{\mu_{\nu}-1/2}{M_N g_A} \frac{(E_e \beta^2 - E_{\nu})(p_e^2 + E_{\nu}^2) + 2\beta^2 E_e E_{\nu}(E_{\nu} - E_e)/3}{p_e^2 + E_{\nu}^2 - 4\beta^2 E_{\nu} E_e/3}$
Unique first forbidden GT	2^{-}	$\left[\Sigma,r\right]^{2-}$	$p_e^2 + E_\nu^2$	$E_\nu^2 + p_e^2 \tilde{F}_{p_{3/2}}$	$\frac{3}{5} \frac{\mu_{\nu} - 1/2}{M_N g_A} \frac{(E_e \beta^2 - E_{\nu})(p_e^2 + E_{\nu}^2) + 2\beta^2 E_e E_{\nu} (E_{\nu} - E_e)/3}{p_e^2 + E_{\nu}^2}$

$$\begin{split} \tilde{F}_{p_{3/2}}(E_e,R) &\simeq F_1(E,Z)/F_0(E,Z) , \\ \tilde{F}_{p_{1/2}}(E_e,R) &\simeq \left[\left(\frac{\alpha Z}{2} + \frac{E_e R}{3} \right)^2 + \left(\frac{m_e R}{3} \right)^2 - \frac{2m_e^2 R}{3E_e} \left(\frac{\alpha Z}{2} + \frac{E_e R}{3} \right) \right] / j_1^2(p_e R) \\ \tilde{F}_{sp_{1/2}}(E_e,R) &\simeq \left[\left(\frac{\alpha Z}{2} + \frac{E_e R}{3} \right) - \frac{m_e^2 R}{3E_e} \right] / (j_0(p_e R)j_1(p_e R)) , \end{split}$$

Stefanik, Dvornicky and Simkovic (2017)

Using corrections of Huber P, (2011)

Forbidden shape factors

PRD 100 (2019) 5, 053005 , YFL, Zhang

We choose exact relativistic calculation (ERC) from Stefanik, Dvornicky and Simkovic (2017)

ERC v.s. Microscopic calculations

Here QRPA and SM microscopic calculations are from Fang & Brown (2015) *Phys. Rev.C* 91 (2015) 2, 025503

Updated flux: update on database

Updated flux: update on database

Flux with new database: calculated with ENSDF 2023

New flux: calculated with ENSDF 2023 + Forbidden decays + High-order corrections

- The extra beta branches in low-energy region
- Forbidden decays $^{212}\text{Bi} \rightarrow ^{212}\text{Po} 1^{\text{st}}$ non-unique forbidden ($\Delta J^{\pi} = 1^{-}$)

Prediction with IBD cross section

The impact on the current and future exps.

Observation in KamLAND & Borexino

KamLAND (2022)

- Liquid scintillator of 1 kon
- 18 years ~ 170 geo-neutrinos
- Precision
 - ~ 36% for 238 U
 - $\sim 53\%$ for ²³²Th

Geophysical Research Letters, 49, e2022GL099566

Borexino (2020)

- Liquid scintillator of 0.3 kon
- 10 years ~ 50 geo-neutrinos
- Precision
 - ~ 53% for ^{238}U
 - ~ 55% for 232 Th

Phys. Rev. D 101, 012009 (2020)

S

Impact on KamLAND and Borexino

Observation in JUNO

Talk this morning!

Geo-neutrino signals

- From the decay chains of ²³²Th and ²³⁸U
- About 1 event per day

Reactor neutrinos

 contributed by two near NPPs (52.5 km) and Daya Bay NPP (~200 km)

Neutrino selection efficiency: 82.2%

	Rate [cpd]	Rate uncert.	Shape uncert.
Geo-neutrinos	1.2	-	5%
Reactor neutrinos	47.1	-	Daya Bay/ TAO
Accidental	0.8	1%	-
⁹ Li/ ⁸ He	0.8	20%	10%
¹³ C(α, n) ¹⁶ O	0.05	50%	50%
Fast neutron	0.1	100%	20%
World reactor neutrinos	1	2%	5%
Atmospheric neutrinos	0.16	50%	50%

World reactor neutrinos

contributed by the NPPs (>300km)

JUNO will measure in 1y ~400 geo-neutrinos events more than Borexino and KamLAND in >10y!

JUNO Analysis (preliminary)

- Current observation predicted with Enomoto's flux
- Fitted with Enomoto's

	Data: Enomoto	Fit: Enomoto
N ₂₃₈	3375	3375 ± 864 (~25%)
N ₂₃₂	1008	1008 ± 304 (~30%)

- Assuming observation predicted with **new flux**
- Fitted with Enomoto's and new fluxes, respectively

Central value: bias Relative uncert.

	Data: New Flux N ₂₃₈ 3258 N ₂₃₂ 917		Fit: New Flux	Fit: Enomoto	
			3258 ± 900 (27.6%)	2868 ± 746 (26.0%)	
			917 ± 321 (35.0%)	1068 ± 346 (32.4%)	

JUNO Analysis (preliminary)

JUNO Analysis (preliminary)

Conclusion

S

- A new geoneutrino flux model is presented. based on new nuclear database: ENSDF 2023 including higher order corrections & forbidden decays
- ➤ IBD yields: ~10%, significant shape variation at high energy range A Q value shift of 21 keV (²³⁴Pa^m → ²³⁴U): 3.3%
- Forbidden shape factor is validated with microscopic calculations
 - → Uncertainty evaluation
 - → Direct measurements of Bi214/Bi212 at high energy range!
- Fitting with Enomoto's flux will lead to bias to the central value comparing with the new flux model.
 - The relative bias almost keeps constant
 - $\sim 10\% 20\%$ for ²³⁸U and ²³²Th
- The significance of the bias
 - $\sim 0.5\sigma$ for current data

- $\sim 5\% 10\%$ for ²³⁸U+²³²Th
- Hardly changed by increasing geo shape uncertainty
- \succ New geo flux model \rightarrow decrease the precision of geo signals

Thanks for your attention!

Backup