The recent results of RENO experiment

Byeongsu Yang for the RENO Collaboration Chonnam National University April 7, 2025 The 3rd IAEA Technical Meeting on Nuclear data for antineutrino spectra applications

Nuclear Power producers

South Korea is one of the world's largest nuclear power producers.

April 7, 2025

Nuclear power plants in South Korea

Now, 26 operating reactors.

Reactor Experiment for Neutrino Oscillation

8 Institutes and 30 Physicists **Chonnam National University** Dongshin University Gwangju Institute of Science and Technology **Gyeongsang National University** Kyungpook National University Seoul National University Seoyeong University Sungkyunkwan university

• Start of project: 2006

- The first reactor experiment running with both near and far detectors
- Observation non-zero θ_{13}

Hanbit Nuclear Power Plant & Neutrino Production

Reactor #	Net Capacity	Thermal Power	Model	Commissioning
1	903 MW	2787 MWt	WH F	1986
2	903 MW	2787 MWt	WH F	1987
3	950 MW	2825 MWt	OPR-1000	1995
4	950 MW	2825 MWt	OPR-1000	1996
5	992 MW	2825 MWt	OPR-1000	2002
6	993 MW	2825 MWt	OPR-1000	2002

Fuel consumption evolution

Anti-electron neutrinos for each GW_{th} ~2 x 10²⁰ neutrinos / GW_{th}

Reactor Experiment for Neutrino Oscillation

RENO Experimental Setup

v-flux contribution			
R#	Near	Far	
1	6.78%	13.73%	
2	14.93%	15.74%	
3	34.19%	18.09%	
4	27.01%	18.56%	
5	11.50%	17.80%	
6	5.58%	16.08%	

Reactors

1,380m

Near Detector

70m high

100m 290m

April 7, 2025

Near Detector

290m

200m high

270m

Far Detector

Hanbit Nuclear Power Plant Complex 6 Reactor array ~2.8GWth/feactor

Far Detector

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

138011

RENO Detectors

Detector	Material	Mass
IBD Target	Gd (0.1%)+LS	16.5 ton
Gamma Catcher	LS	30.0 ton
Buffer	Mineral oil	64.6 ton
Veto	Water	352.6 ton

354 ID PMTs and 67 OD PMTs (10" HAMAMATSU R7081)

Data taking

- RENO DAQ running
 Aug. 2011 ~ Mar. 2023.
- 3800[days] livetime
- The other systems maintaining quality of the hardware are under operation.
- Recently, started re-operating DAQ of the near detector.
 →RENE experiment (sterile neutrino search. See the next talk).

Period	Live time	Result
Aug. 2011 ~ Feb. 2018	2200 [days]	2018 PRL
Aug. 2011 ~ Mar. 2023	3800 [days]	New result

Major Results from RENO

- Precise measurement of $|\Delta m^2_{ee}|$ and θ_{13}
 - Phys. Rev. Lett. 108, 191802 (2012) 229[d]
 - Phys. Rev. Lett. 116, 211801 (2016) 500[d]
 - Phys. Rev. D 98, 012002(2018) 500[d]
 - Phys. Rev. Lett. 121, 201801 (2018) 2200[d]
 - arXiv:2412.18711 3800[d] days of data -> new result
- Measurement of θ_{13} with nH capture
 - JHEP 04 029 (2020) 1500[d]
 - 2800[d] days of data
- Reactor neutrino yield & spectrum
 - Phys. Rev. Lett. 122, 232501 (2019) 1800[d]
 - Phys. Rev. D 104, L111301 (2021) 2900[d]
- Results from sterile neutrino search
 - Phys. Rev. Lett. 125, 191801 (2020) 2200[d]
 - Phys. Rev. D 105, L111101 (2022) 2500[d] x NEOS 180[d]

will be finished with 3800[d] analyses.

will be continued beyond 3800[d] analyses according to re-operation of the near detector.

RENO Antineutrino Detection Principle

12

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

RENO Event Display

RENO Detector Calibration

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

IBD Candidate Sample & Background Estimation

- 1,211,995(144,667) $\bar{\nu}_e$ candidate events observed for near(far).
- The total background rates
 - Near: 9.08±0.18 events/day (2.5%)
 - Far: 2.06±0.13 events/day (5.3%)

Detector	Near	Far
IBD rate	366.47 ± 0.33	38.70 ± 0.10
after background subtraction	357.39 ± 0.38	36.64 ± 0.16
total background rate	9.08 ± 0.18	2.06 ± 0.13
live time [days]	3307.25	3737.85

measured IBD and estimated background rates with $1.2 < E_p < 8.0$ [MeV], given per day

Improvement

- Li/He Background Spectrum
 - extension of dataset
 - combined far & near spectrum
- reactor-related uncertainties
 - decomposition of detectorcorrelated & detectoruncorrelated components
 - only detector-uncorrelated component can be considered for far-to-near ratio analysis.

3800d: arXiv:2412.18711

IBD prompt spectrum

- A shape comparison between the observed IBD prompt spectrum and the prediction from a reactor \bar{v}_e model
 - Data : observed IBD prompt spectrum after background subtraction
 - MC : prediction with best-fit oscillation
- The fractional difference between data and prediction in the lower panel
- A clear discrepancy between the observed and the predicted spectral shapes in the region of 5 [MeV]

Precise measurement of $|\Delta m_{ee}^2|$ and θ_{13}

Based on the measured far-to-near ratio of prompt spectra from RENO 3800 days (Aug. 2011 – Mar. 2023)

 $\sin^{2}2\theta_{13} = 0.0920^{+0.0044}_{-0.0042} (stat.)^{+0.0041}_{-0.0041} (syst.)$ (6.4% precision) $|\Delta m^{2}_{ee}| = 2.57^{+0.10}_{-0.11} (stat.)^{+0.05}_{-0.05} (syst.) (\times 10^{-3} \text{ eV}^{2}) (4.5\% \text{ precision})$

source of the systematic uncertainty

	$\Delta m_{ee}^2 \ [10^{-3} eV^2]$	sin ² 2 θ_{13} []
reactor	-	± 0.0013
detection efficiency	-	± 0.0032
energy scale	± 0.05	± 0.0016
backgrounds	± 0.02	± 0.0020

(reference) 2018 PRL $\sin^2 2\theta_{13} = 0.0896 \pm 0.0048(\text{stat.}) \pm 0.0047(\text{syst.})$ $|\Delta m_{ee}^2| = 2.68 \pm 0.12(\text{stat.}) \pm 0.07(\text{syst.}) (x10^{-3} \text{ eV}^2)$

Energy & L/E Dependent \bar{v}_e Oscillation

Energy-dependent observed L/E dependent oscillation disappearance of reactor $\bar{\nu}_e$ 8000 Events / 0.2 MeV 6000 ف 4000 0.95 $P(\overline{\mathrm{V}}_{\mathrm{e}}$ Far Data 2000 Prediction (best fit) Far Data Prediction (no oscillation) **b** Near Data 0.9 Data / Prediction Prediction from near data 1.10.2 0.4 0.6 0.8 n 0.9 $L_{\rm eff}/E_{\rm v}~({\rm km/MeV})$ 0.82 3 7 5 6 $P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E_{\nu}} \right)$ Prompt Energy (MeV) 3800d: arXiv:2412.18711

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

New Result(3800[d]) vs 2018 PRL(2200[d])

Precision of oscillation measurement in the RENO's analyses

	live time	precision	
		$sin^2 2\theta_{13}$	Δm^2_{ee}
2018 PRL	2200 [d]	7.5%	5.2%
new result	3800 [d]	6.4%	4.5%

Comparing with the 2018 PRL result, the new result gives 14% and 13% improved precision for $\sin^2 2\theta_{13}$ and Δm_{ee}^2 each.

3800d: arXiv:2412.18711

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

RENO 2800 Days Data n-H Analysis Results

April 7, 2025

θ_{13} Measurement with 2800 Days n-H data

	Near	Far
DAQ live time (days)	2259.298	2653.297
IBD candidates & backgrounds rate	316.67 ± 0.37	61.10 ± 0.15
After background subtraction	298.60 ± 0.62	35.67 ± 0.28
Total background rate	18.06 ± 0.50	25.43 ± 0.24

$\sin^2(2\theta_{13}) = 0.082 \pm 0.007(\text{stat.}) \pm 0.011(\text{syst.})$

JHEP(2019) : 1500days n-H result → $\sin^2(2\theta_{13}) = 0.086 \pm 0.008(\text{stat.}) \pm 0.014(\text{syst.})$ PRL(2018) : 2200days n-Gd result → $\sin^2(2\theta_{13}) = 0.0896 \pm 0.0048(\text{stat.}) \pm 0.0047(\text{syst.})$

Global Comparison

The new result shows good agreement with the global results.

Cosmogenic ⁹Li and ⁸He: β -n Decays

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

April 7, 2025

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

120

100

Cosmogenic Muons at RENO

Topological profile of RENO site (ALOS world 3D)

PRD 106, 012005 (2022)

LS/MO + MO only (MC)

LS/MO + MO only (MC)

80

Visible Energy of Cosmic Muons Cosmic Muon MC: MUSIC

Yields of Cosmogenic ⁹Li and ⁸He

RENO Fuel Fraction in the Reactor Core

 Average fission fraction: f_235: f_239: f_238: f_241= 0.573 : 0.299 : 0.073 : 0.055

Fuel Dependence of IBD Yield

• Fuel dependence study of IBD spectrum is underway

Fuel Dependence of the 5 MeV Excess

• Fuel dependence study is underway

Reactor Antineutrino Anomaly: RAA

IBD yield: $\bar{y}_f = 5.852 \pm 0.124 (\times 10^{-43} \text{ cm}^2/\text{fission})$

PRD 104, L111301 (2021)

RENO Sterile Neutrino Search

(3 active +1 sterile) Neutrino Model

 $P(\overline{\nu}_e \to \overline{\nu}_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(1.27\Delta m_{31}^2 \frac{L}{E_\nu} \right) - \sin^2 2\theta_{14} \sin^2 \left(1.27\Delta m_{41}^2 \frac{L}{E_\nu} \right)$

Search Sterile Neutrinos (RENO Near/Far) : Sub-eV Scale

Based on 2200 days nGd data *U*

Sterile Neutrino Search (RENO + NEOS) : ~eV Scale

Neutrino Experiment for Oscillation at Short baseline

- Primary goal: search for eV scale sterile neutrino in the 4 ν framework.
 - NEOS-1: Aug. 2015 May 2016
 - NEOS-2: Sep. 2018 ~ Oct. 2020

Sterile Neutrino Search (RENO + NEOS) : ~eV Scale

Comparison of neutrino energy

Comparison with spectra of 4 Reactor antineutrino spectra unfolded spectra among RENO, NEOS and ν models from RENO and NEOS data Daya Bay NEOS / prediction from REN RENO $(\Delta m_{41}^2, \sin^2 2\theta_{14}) = (2.41 \text{ eV}^2, 0.08)$ 1.20RENO 11 - NEOS $(\Delta m_{41}^2, \sin^2 2\theta_{14}) = (0.34 \text{ eV}^2, 0.05)$ Normalized rate (%) 1.15Ratio to prediction 1.10 1.05 1.000.9 Prediction from NEOS / RENO 0.95 $(\Delta m_{41}^2, \sin^2 2\theta_{14}) = (2.36 \text{ eV}^2, 0.06)$ 0.90 $(\Delta m_{41}^2, \sin^2 2\theta_{14}) = (0.34 \text{ eV}^2, 0.05)$ NEOS 0.85 Normalized rate (%) Neutrino Energy (MeV) systematic uncert .5 3 5 6 Prompt Energy (MeV) Data release of prompt and neutrino spectrum (with error matrices) 0.5 PRD 104, L111301 (2021) RENO 2 3 5 6 7 Neutrino Energy (MeV) PRD 105, L111101 (2022) RENO+NEOS

Byeongsu Yang, IAEA TM 2025, Seoul, Koera

Sterile Neutrino Search (RENO + NEOS) : ~eV Scale

- RENO+NEOS best fit at (0.08, 2.4 eV²) around the RAA best fit
- 4 $\nu \min \chi^2 / \text{DOF} = 47.45 / 58$ 3 $\nu \min \chi^2 / \text{DOF} = 56.24 / 60$
- $\Delta \chi^2 = 8.8$, p=8.5%
- Motivate the RENE experiment (sterile neutrino search. See the next talk).

Summary

- Report Precision measurement of $|\Delta m_{ee}^2|$ and θ_{13} using RENO 3800 days nGd data
- Correlation btw 5 MeV excess and 235U fission (2.9 σ C.L.) PRL 122, 232501 (2019)
- The first RENO sterile neutrino search: PRL 125, 191801 (2020)
- RENO antineutrino spectrum: PRD 104, L111301 (2021)
- Absolute reactor neutrino flux: R = 94.1 % ± 1.9 % (of HM) PRD 104, L111301 (2021)
- Sterile neutrino search (RENO + NEOS): PRD 105, L111101 (2022)
- Cosmogenic 9Li and 8He rate at RENO: PRD 105, L111101 (2022)
- RENO nH data analysis (in preparation)
- Reactor fuel dependence of neutrino spectrum (in preparation)