

Charge radii of unstable Sc and Zn isotopes -from isotope shifts measurement

Xiaofei Yang

SKLNPT, School of Physics, Peking University

"IAEA Technical Meeting on Compilation and Evaluation of Nuclear Charge Radii", Jan. 27-Jan. 30 2025, IAEA, Vienna

□ Methods to measure the charge radii

Charge radii of Sc isotopes

Charge radii of Zn isotopes

Summary

Methods to measure the charge radius

Juclearmodel independent

Charge radius from isotope shift

Atomic Data and Nuclear Data Tables Volume 99, Issue 1, January 2013, Pages 69-95

Table of experimental nuclear ground state charge radii: An update

I. Angeli ª, K.P. Marinova ^b ペ ⊠

Summarized all the nuclear charge radii of isotopes measured using all different methods before 2013.

For unstable nuclei, most of them comes from isotope shifts!

Isotope shifts:

Changes in mean square charge radii

RMS: root mean square charge radii

$$R=\sqrt{\langle r^2
angle^{A\prime}}=\sqrt{\deltaig\langle r_c^2ig
angle^{AA\prime}+\langle r^2
angle^A}$$

How to get F, K?

Charge radii from isotope shift

□ Methods to measure the charge radii

- **Charge radii of Sc isotopes**
- **Charge radii of Zn isotopes**
- **D** Summary

Charge radii of scandium isotopes

PLB 819, 136439 (2021)

	F (MHz fm ⁻²)	M (GHz u)	Method
2011 IGISOL	-355(50)	583(30)	MCDF
2021 IGISOL	-349(15)	625(60)	MCDF

Charge radii of scandium isotopes

PRL131, 102501 (2023)

 40 Sc red. χ^2 = 1.01

⁴¹Sc red. χ² = 1.21

1500

⁴⁵Sc red. χ² = 1.04

1500 2000 2500

-500

500 1000

0

1000

500

Ó Relative frequency (MHz)

-500

0 -2000 -1500 -1000

	F (MHz fm ⁻²)	M (GHz u)	Method	
2011 IGISOL	-355(50)	583(30)	MCDF	
2021 IGISOL	-349(15)	625(60)	MCDF	
2023 BECOLA	-352(12)	604(22)	MCDHF	
	w(MS) (con		(cl) 0 577 (c. 2)	
Series	$K^{(HG)}$ (GHz u)		$\frac{F^{(cl)}}{(MHz/fm^2)}$	
Ref. [33]	$+583 \pm 30$ +625 ± 60		-355 ± 50	
Kel. [34] This Letter	$+623 \pm 60$ $+633 \pm 40$		-349 ± 13 -358 ± 20	
Weighted mean	$+604 \pm$		-350 ± 20 -352 ± 12	

Charge radii of scandium isotopes @2018 experiment

PRL, under revision (2025)

Charge radii of scandium isotopes

PRL, under revision (2025)

□ Methods to measure the charge radii

Charge radii of Sc isotopes

Charge radii of Zn isotopes

Summary

Charge radii of isotopes in Ni region

^{65, 67}Ga *PRC 96, 044324 (2017)*

⁶⁸⁻⁷⁴Ge PLB 856, 138867 (2024)

Charge radii of zinc isotopes @2014 experiment

MCDHF PHYSICAL REVIEW A **96**, 042502 (2017)

Multiconfiguration calculations of electronic isotope-shift factors in ZnI

Livio Filippin,^{1,*} Jacek Bieroń,^{2,†} Gediminas Gaigalas,^{3,‡} Michel Godefroid,^{1,§} and Per Jönsson^{4,¶}
 ¹Chimie Quantique et Photophysique, Université libre de Bruxelles, B-1050 Brussels, Belgium
 ²Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagielloński, PL-30-348 Kraków, Poland
 ³Institute of Theoretical Physics and Astronomy, Vilnius University, LT-10222 Vilnius, Lithuania
 ⁴Group for Materials Science and Applied Mathematics, Malmö University, S-20506 Malmö, Sweden (Received 25 August 2017; published 12 October 2017)

The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of electronic isotope-shift factors for a set of transitions between low-lying states in neutral zinc. These electronic quantities, together with observed isotope shifts between different pairs of isotopes, provide the changes in mean-square charge radii of the atomic nuclei. Within this computational approach, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and to estimate theoretical error bars of the isotope-shift factors.

DOI: 10.1103/PhysRevA.96.042502

	F (MHz fm ⁻²)	M (GHz u)	Method
2019 COLLAPS	+346(3)	+14(7)	MCDHF
2019 COLLAPS	+346(35)	+49(17)	MCDHF + KP

PLB 771, 385 (2017)

PHYSICAL REVIEW RESEARCH 5, 043142 (2023)

All-optical differential radii in zinc

B. K. Sahoo^{1,*} and B. Ohayon^{2,†}

¹Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380058, Gujarat, India ²The Helen Diller Quantum Center, Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel

(Received 30 July 2023; accepted 13 October 2023; published 13 November 2023)

We conduct high-accuracy calculations of isotope shift (IS) factors of the states involving the D_1 and D_2 lines in Zn II. Together with a global fit to the available optical IS data, we extract nuclear-model independent, precise differential radii for a long chain of Zn isotopes. These radii are compared with the ones inferred from muonic x-ray measurements. Some deviations are found, which we ascribe to the deformed nature of Zn nuclei that introduces nuclear-model dependency into radii extractions from muonic atoms. We arrive at the conclusion that, in cases where the many-body atomic calculations of IS factors are well established, optical determinations of differential radii are more reliable than those from the muonic x-ray measurements, opening the door to obtaining more trustworthy nuclear radii across the nuclear chart.

DOI: 10.1103/PhysRevResearch.5.043142

	F (MHz fm ⁻²)	M (GHz u)	Method
2019 COLLAPS	+346(3)	+14(7)	MCDHF
2019 COLLAPS	+346(35)	+49(17)	$MCDHF + \mathbf{KP}$
Combined analysis @ BKS, BO			

Charge radii of zinc isotopes @2023 experiment

Charge radii of zinc isotopes @2023 experiment

	F (MHz fm ⁻²)	M (GHz u)	Method
2019 COLLAPS	+346(3)	+14(7)	MCDHF
2019 COLLAPS	+346(35)	+49(17)	$MCDHF + \mathbf{KP}$
2023 CRIS	+324(3)	-21(30)	FS-RCCSDT
2023 CRIS	+324(3)	+3.9(21)	FS-RCCSDT+KP

A. V. Oleynichenko; L. V. Skripnikov

81

□ Methods to measure the charge radii

- **Charge radii of Sc isotopes**
- **Charge radii of Zn isotopes**

D Summary

- Significant progress of nuclear charge radii measurement of unstable nuclei with laser spectroscopy has been made since 2013
- Even with one stable isotope available, we could now extract the nuclear charge radius by taking advantages of the state-of-the-art atomic theory.
- Nevertheless, in most cases, the accuracy of nuclear charge radii remains limited by the atomic mass- and field-shift factors, highlighting the need for further improvements.

Thanks for your attention!

https://collaps.web.cern.ch/

https://isolde-cris.web.cern.ch/

Thanks for your attention!

