From Total Neutron Cross Sections

to Nuclear Charge Radii

Tables and systematics

I. Angeli

IEAEA, Vienna 27 – 30, January, 2025

War and Peace

1945: The *,Smyth Report'* National nuclear research institutes Quest for uranium

1954: Research Institute for Physics, Debrecen Basic research Search for U in coal-mines Health physics

1957: International Atomic Energy Agency Peaceful purposes of nuclear energy

Total neutron cross sections

1965: J. Csikai: Neutron physics group, $E_n \sim 14$ MeV cross sections. Reactions by activation method. σ_T by transmission method.

1967: → Institute of Experimental Physics, University of Debrecen IAEA(NDS): Research Contract, <u>neutron generator</u>. *Thank you Joe Schmidt! Thank you Joe Dolnićar!*

1968: $\sigma_{T}({}^{12}C) < \sigma_{T}({}^{9}Be)$! (Nucl. Phys., A119, 525) Z, N = 6, ... magic?

1969: Correlation of matter radii with binding energy (Phys.Lett. B29, 36)

Black nucleus formula: $\sigma_{BN} = 2\pi (R_m + \lambda)^2 \rightarrow R_m$

1971: Visit to loffe Institute: 1 week: total neutron cross sections;

3 weeks: K_a lsotope Shifts $\rightarrow \delta < r^2 >_{ch}$ + other e^- methods!

1974: Atomic Data and Nuclear Data Tables, **14**, special issue 5 – 6:

p.: 479: DeJager, et al.: Electron scattering ...

p.: 509: Engfer, et al.: Muonic atoms ...

p.: 605: Boehm, et al.: K_a Isotope Shifts ...

p.: 613: Heilig, et al.: Optical Isotope Shifts ...

What is the physics behind these data?

$\rho = R / [(r_0 + r_1 / A^{2/3} + r_2 / A^{4/3}) A^{1/3}]$ liquid drop + surface thickness (Elton) 3 (c) Cd ___Ru 101 N = 50: **₩**Sr Shell effect! 1.00 Zr 099

55

60

65

70

N

50

a_z: slope of the lines for the element. **A**_z: Average mass number

 a_z : slope of the lines for the element. **A_z:** Average mass number

1977: (Nucl. Phys. A288, 480):

Isotopic series: shell effects, deformation effects, odd-even effects ~ 6×10^{-4} .

Data?

1978: (ATOMKI Közlemények = Reports, 20, 1)

Isotonic, isobaric and iso-symmetric series: effects

+ Appendix: rms charge data table!

Table I. (1978)

rms charge radii and their normalized values $\boldsymbol{\rho}$

Element	Mass number	rms radius (fm)	Normalized rms radius p	References
чН	l	0.810±0.009	0.5975±0.0066	2,13,17,18,44
-	2	2.057±0.046	1.1660±0.0261	2,13,19
	3	1.700±0.051	0.8756±0.0263	2,13
2 ^{He}	3	1.869±0.020	0.9626±0.0103	2,13,45
2	4	1.663±0.013	0.8073±0.0063	2,20,21,22,23
3 ^{Li}	6	2.505±0.020	1.1228±0.0090	2,13,14,23,24,25
	7	2.405±0.020	1.0456±0.0087	2,13,14,23,26
₄ Be	9	2.512±0.012	1.0380±0.0050	2,13,14,22,23,25,26
5 ^B	10	2.461±0.100	0.9950±0.0404	2,14
	11	2.388±0.042	0.9463±0.0166	2,13,14,25,27,28

Comparison to theory: normalized rms radii (ρ)

Neutron skins calculated

•

1987: At. Data Nucl. Data T. 36, 495: DeVries: Electron scattering

At. Data Nucl. Data T. 37, 455: Aufmuth: Optical Isotope Shifts

Data sources!

1989: Do *r*_{*el*} and *r***_{***mu***} measure the same quantity?**

Difference $(r_{el} - r_{mu})$:

```
85 nuclei, mean: -9.3(1.5) am.
```

```
R(A) \approx -12 + 0.03 \times A \, \text{fm}.
```

Negative, decreasing with A

(Zeitschrift für Physik, A334, 377)

1991: Evaluation procedure for nuclear *rms* charge radii (Acta Phys. Hung. **69**, 233)

Search for discrepant data: *"outliers"*.

Different data screening and averaging procedures tested.

How to form a weighted mean and its uncertainty for a data group?

<u>Conclusion</u>: - "Final results are less sensitive to the actual procedure of evaluation than to **the selection of input data**." (Cohen, Taylor).

Illustrative example from the input file RMS charge radii (fm). Updated: 01–Jul–90

1H 1	17 el	0 mu			guilepart 3 and actual a rade no that line
0.7400	.2400	Ho55	el	Х	Included in Ho56. Old
0.7700	.1000	Ch56	el	X	Included in Ho56. Old
0.7700	.1000	Ho56	el	X	Contains Ho55, Ch56, MA56. Old
0.8000	.0400	Ho58	el	X	Old
0.7500	.0500	Bu61	el	X	Included in Th72
0.8400	.0400	Le62	el	X	Included in Th72
0.8200	.0400	Be63	el	X	Outlier
0.8600	.0300	Du63	el	X	Included in Si80
0.8000	.0250	Fr66	el	X	Included in Th72
0.8100	.0200	Ak72	el	X	Outlier
0.8500	.0200	Th72	el	x	Analysis of Bu61, Le62, and Fr66
0.9000	.0300	Bo74	el	X	Included in Bo75a, Si80
0.8100	.0400	Mu74	el	X	Included in Bo75a, Si80
0.8400	.0200	Bo75	el	X	Included in Bo75a, Si80
0.8700	.0200	Bo75a	el	X	Analysis of Du63, Bo74, Mu74, Bo75
0.8400	.0500	An77	el		From Lamb shift!
0.8620	.0120	Si80	el		Contains Du63, Bo74, Mu74, Bo75

Table II. 1991 (Acta Phys. Hung. **69**, 233)

"1990-best-values" of RMS charge radii Input data updated: 01–Jul–90

Z	El	A	R	dR
0	n	1	-0.3475	.0063
1	Н	1	0.8608	.0115
		2	2.1168	.0058
		3	1.7723	.0401
2	He	3	1.9419	.0438
and the		4	1.6733	.0010
3	Li	6	2.5741	.0440
		7	2.4221	.1000
4	Be	9	2.5304	.0122
5	В	10	2.4315	.0491
e e e		11	2.4171	.0240
6	С	12	2.4826	.0015
1.0	161	13	2.4635	.0035
- An		14	2.5122	.0213

1994: At. Data Nucl. Data Tables, 56, 133: Nadjakov: Systematics ...

1995: At. Data Nucl. Data Tables, 60, 177: Fricke: Tables ...

1995: RETIREMENT

IAEA(NDS) Research Contract

Thank you *Hans Lemmel!*

1998: Table III. (Acta Phys. Hung. New Series, **8**, 23)

Comparison. Refined method (**FOR**TRAN). Simple method (**EXC**EL)

Z El A RFOR dRFOR REXC

0 n 1 -0.1201 0.0034 -0.1186

0

0.0041

 $dR_{\rm EXC}$ Rel. diff. $R_{\rm F+E}$ $dR_{\rm F+E}$

-0.1194 0.0038

R _{FOR} –	R _{EXC}

	1	Н	1	0.8521	0.0069	0.8520	0.0070	0	0.8521	0.0070
	-		2	2.1352	0.0064	2.1352	0.0065	0	2.1352	0.0064
dR_{F+F}			3	1.7591	0.0356	1.7591	0.0363	0	1.7591	0.0359
	2	He	3	1.9373	0.0296	1.9408	0.0240	0	1.9390	0.0268
	-		4	1.6758	0.0026	1.6757	0.0028	0	1.6758	0.0027
010/	3	Li	6	2.5521	0.0311	2.5522	0.0333	0	2.5522	0.0322
91% Within	~		7	2.3952	0.0506	2.3953	0.0514	0	2.3952	0.0510
	4	Be	9	2.5180	0.0114	2.5180	0.0119	0	2.5180	0.0116
$\pm \frac{1}{2}$ combined	5	В	10	2.4278	0.0492	2.4277	0.0499	0	2.4277	0.0496
		- Test	11	2.4059	0.0291	2.4060	0.0294	0	2.4059	0.0293
error	6	С	12	2.4704	0.0023	2.4705	0.0023	0	2.4704	0.0023
			13	2.4625	0.0036	2.4625	0.0037	0	2.4625	0.0037
			14	2.4978	0.0126	2.4966	0.0165	0	2.4972	0.0146
	7	N	14	2.5519	0.0083	2.5520	0.0087	0	2.5520	0.0085
			15	2.6094	0.0085	2.6095	0.0094	0	2.6094	0.0089
	8	0	16	2,7061	0.0084	2.6995	0.0068	0.5	2.7028	0.0076

1999: Table IV. (IAEANDS_indc-hun-0033)

Similar to III. but:

Data search updated to May 1999.

Contains full input data tables, and background materials.

Presented also in electronic files.

Chapter with easy-to-use formulae added.

Table V.2004: Consistent set of nuclear rms charge radii(Atomic Data and Nuclear Data Tables, 87, 185)

Measured differences used for constraint by least squares;

Redundancy improves accuracy:

Output errors are less than input!

The least precise value benefits most of the constraint.

References for the Tables

Differences l	between radii of neighboring nuclei (not isotopes) from electron scattering and muonic atom X-rays	
Fr92	G.Fricke, et al.: Phys. Rev. C45 (1992) 80, Table III	O, F, Ne, Na, Mg, Al, Si
Fr95	G.Fricke, et al.: At. Data Nucl. Data Tables, 60 (1995) 177, Table VII	Many; compilation
He89	J.Herberz: Ph.D. thesis, Univ. Mainz, KPH 6/89 (1989)	O, F, Na, Ne, Mg, Al, Si
Vr87	H.de Vries, et al.: At. Data Nucl. Data Tables, 36 (1987) 495, Table III	Many; compilation.
Wo80	H.D.Wohlfahrt, et al.: Phys. Rev. C22 (1980) 264	
Wo81	H.D.Wohlfahrt, et al.: Phys. Rev. C23 (1981) 533, Table VI	K,Ca,Sc,Ti,V,Cr,Mn,Fe
Differences	between isotopes from optical isotope shifts	
Ah85	S.A.Ahmad, et al.: Z. Physik, A321 (1985) 35	Eu
Ah88	S.A.Ahmad, et al.: Nucl. Phys., A483 (1988) 244	Ra
A179	E.Alvarez, et al.: Physica Scripta, 20 (1979) 141	Xe
A183	G.D.Alhazov, et al.: Zhurn. Exp. Teor. Fiz. Letters, 37 (1983) 231	Eu
A185	G.D.Alhazov, et al.: Izv. Ak. Nauk SSSR, Ser. Fiz., 49 (1985) 24	Sm, Eu
A185a	G.D.Alhazov, et al.: Tez. Dok. XXXV. Sov. Leningrad (1985)	Tm
A186a	G.D.Alhazov, et al.: Yadernaya Fizika, 44 (1986) 1134	Sm, Eu
A187	G.D.Alhazov, et al.: Tez. Dokl. XXXVII. Soveshch. (1987) 96	Nd, Sm
A188	G.D.Alkhazov, et al.: Nucl. Phys., A477 (1988) 37	Tm
A188a	G.D.Alkhazov, et al.: Pisma v Zs.E.T.F., 48 (1988) 373	Gd
A189	G.D.Alkhazov, et al.: Nucl. Phys., A504 (1989) 549	Но
A190	G.D.Alkhazov, et al.: Z. Phys., A337 (1990) 367	Tb
A190a	G.D.Alkhazov, et al.: Z. Phys., A337 (1990) 257	Eu
An82	A.Andl, et al.: Phys. Rev., C26 (1982) 2194	Ca

2005: Nobel Peace Prize!

International Atomic Energy Agency

and

Mohamed ElBaradei

Congratulations!

2007: Moments of the 2p-Fermi charge distribution (Acta Phys. Deb., **41**, 59)

Moments $< r^m >$ and isotopic differences $\delta < r^m >$ for m = 1 to 10

Diffusity *a* assumed to be constant.

 $\delta < r^m >$ for even *m* are given in terms of $\delta < r^2 >$

Useful parameter: $\beta = \pi . a/c$ introduced

$$\begin{split} r^m \rangle &= a^m \frac{F_{m+2}(k)}{F_2(k)} = \frac{3}{m+3} c^m \times \\ \left\{ 1 + \left[\frac{(m+3)(m+2)}{3!} - 1 \right] \beta^2 + \left[\frac{7}{3} \frac{(m+3)(m+2)(m+1)m}{5!} - \frac{(m+3)(m+2)}{3!} + 1 \right] \beta^4 + \left[\frac{31}{3} \frac{(m+3)(m+2)\dots(m-1)(m-2)}{7!} - \frac{7}{3} \frac{(m+3)(m+2)(m+1)m}{5!} + \frac{(m+3)(m+2)}{3!} - 1 \right] \beta^6 \\ &+ \left[\frac{381}{5} \frac{(m+3)\dots(m-3)(m-4)}{9!} - \frac{31}{3} \frac{(m+3)\dots(m-2)}{7!} + \frac{7}{3} \frac{(m+3)\dots(m-3)(m-4)}{5!} - \frac{31}{3!} \frac{(m+3)\dots(m-2)}{7!} + 1 \right] \beta^8 \\ &+ \left[\frac{2555}{3} \frac{(m+3)\dots(m-5)(m-6)}{11!} - \left(\frac{381}{5} \frac{(m+3)\dots(m-3)(m-4)}{9!} - \dots - 1 \right) \right] \beta^{10} \\ &+ \left[\frac{1414477}{105} \frac{(m+3)\dots(m-7)(m-8)}{13!} - \left(\frac{2555}{3} \frac{(m+3)\dots(m-5)(m-6)}{11!} + \dots + 1 \right) \right] \beta^{12} + \dots \right\} \end{split}$$

$$\begin{aligned} \mathbf{Even}\,\boldsymbol{m} & \langle r^2 \rangle &= \frac{3}{5}c^2 \left(1 + \frac{7}{3}\beta^2\right) = \frac{3}{5}c^2 + \frac{7}{5}(\pi a)^2 \\ & \langle r^4 \rangle &= \frac{3}{7}c^4 \left(1 + 6\beta^2 + \frac{31}{3}\beta^4\right) \\ & \langle r^6 \rangle &= \frac{1}{3}c^6 \left(1 + 11\beta^2 + \frac{239}{5}\beta^4 + \frac{381}{5}\beta^6\right) \\ & \langle r^8 \rangle &= \frac{3}{11}c^8 \left(1 + \frac{52}{3}\beta^2 + \frac{410}{3}\beta^4 + \frac{1636}{3}\beta^6 + \frac{2555}{3}\beta^8\right) \\ & \langle r^{10} \rangle &= \frac{3}{13}c^{10} \left(1 + 25\beta^2 + \frac{926}{3}\beta^4 + \frac{46714}{21}\beta^6 + \frac{910573}{210}\beta^8 + \frac{19447}{210}\beta^{10}\right) \end{aligned}$$

$$\begin{aligned} \mathsf{Odd}\,\boldsymbol{m}\,\langle r\rangle &=\; \frac{3}{4}c\Big[1+\beta^2-\frac{8}{15}\beta^4(1-\beta^2+\beta^4-\beta^6+\beta^8-\ldots)\Big]\\ &=\; \frac{3}{4}c\Big[1+\beta^2-\frac{8}{15}\frac{\beta^4}{1+\beta^2}\Big]\\ \langle r^3\rangle &=\; \frac{1}{2}c^3\Big[1+4\beta^2+3\beta^4-\frac{32}{21}\frac{\beta^6}{1+\beta^2}\Big]\\ \langle r^5\rangle &=\; \frac{3}{8}c^5\Big[1+\frac{25}{3}\beta^2+\frac{73}{3}\beta^4+17\beta^6-\frac{128}{15}\frac{\beta^8}{1+\beta^2}\Big]\\ \langle r^7\rangle &=\; \frac{3}{10}c^7\Big[1+14\beta^2+84\beta^4+226\beta^6+155\beta^8-\frac{2560}{33}\frac{\beta^{10}}{1+\beta^2}\Big]\\ \langle r^9\rangle &=\; \frac{1}{4}c^9\Big[1+21\beta^2+210\beta^4+1154\beta^6+3037\beta^8+2073\beta^8\\ &-\frac{1415168}{1365}\frac{\beta^{12}}{1+\beta^2}\Big]\end{aligned}$$

(20)

$$\begin{split} \delta\langle \mathbf{r}^{4}\rangle &= \frac{25}{14} \frac{A_{1} + A_{2}}{A_{2} - A_{1}} \left(\delta\langle r^{2}\rangle\right)^{2} + \frac{30}{7} (\pi a)^{2} \delta\langle r^{2}\rangle \\ \delta\langle r^{6}\rangle &= \frac{125}{48} \left(\frac{A_{1} + A_{2}}{A_{2} - A_{1}}\right)^{2} \left(\delta\langle r^{2}\rangle\right)^{3} + \frac{275}{18} (\pi a)^{2} \frac{A_{1} + A_{2}}{A_{2} - A_{1}} \left(\delta\langle r^{2}\rangle\right)^{2} \\ &+ \frac{239}{9} (\pi a)^{4} \delta\langle r^{2}\rangle \\ \delta\langle r^{8}\rangle &= \frac{625}{176} \left(\frac{A_{1} + A_{2}}{A_{2} - A_{1}}\right)^{3} \left(\delta\langle r^{2}\rangle\right)^{4} + \frac{1625}{44} (\pi a)^{2} \left(\frac{A_{1} + A_{2}}{A_{2} - A_{1}}\right)^{2} \left(\delta\langle r^{2}\rangle\right)^{3} \\ &+ \frac{5125}{33} (\pi a)^{4} \frac{A_{1} + A_{2}}{A_{2} - A_{1}} \left(\delta\langle r^{2}\rangle\right)^{2} + \frac{8180}{33} (\pi a)^{6} \delta\langle r^{2}\rangle \\ \delta\langle r^{10}\rangle &= \frac{15625}{3328} \left(\frac{A_{1} + A_{2}}{A_{2} - A_{1}}\right)^{4} \left(\delta\langle r^{2}\rangle\right)^{5} \\ &+ \frac{15625}{208} (\pi a)^{2} \left(\frac{A_{1} + A_{2}}{A_{2} - A_{1}}\right)^{3} \left(\delta\langle r^{2}\rangle\right)^{4} \\ &+ \frac{57875}{104} (\pi a)^{4} \left(\frac{A_{1} + A_{2}}{A_{2} - A_{1}}\right)^{2} \left(\delta\langle r^{2}\rangle\right)^{3} \\ &+ \frac{583925}{273} (\pi a)^{6} \frac{A_{1} + A_{2}}{A_{2} - A_{1}} \left(\delta\langle r^{2}\rangle\right)^{2} + \frac{910573}{546} (\pi a)^{8} \delta\langle r^{2}\rangle \end{split}$$

2010: Calculation of Fermi parameters from charge moments (Acta Phys. Deb. 44, 6)

Fricke: ADNDT, 60, (1995) 177. Table IX:

Experimental moments: $< r^2 > 1/2$, $< r^4 > 1/4$, $< r^6 > 1/6$ for 20 nuclei.

Fermi parameters **c** and **a** calculated for 20 nuclei.

Uncertainty estimated.

Method and program described.

Table VI. 2013: Table of experimental nuclear ground statecharge radii(Atomic Data and Nuclear Data Tables, 99, 69)

Atomic Data and Nuclear Data Tables, 56 (1994) 133: Nadjakov, et al. [12]

Updated by K. Marinova

Atomic Data and Nuclear Data Tables, **87** (2004) 185: Angeli. [13] Updated by I. Angeli

Combined: $R = R_{av} = 0.5 \times (R[12] + R[13])$ Not independent!

 $\Delta R_{tot} = max (\Delta R[12], \Delta R[13], 0.5 \times |R[12] - R[13]|)$

4% differ more than $1 \times \Delta R_{tot}$ <u>underlined</u> in Table 1.

THANK YOU, KRASSIMIRA!

2021:The quest for the proton charge radius [p.31. in: Gribov-90 Memorial Volume, World Scientific] (arXiv: 2103.17101v1 [physics.hist-ph] 29 Mar 2021)

Present and future

1) *Personal: not able to continue!*

→ Endre TAKÁCS

2) Problems

3) Future: neutron radii?

Dispersion correction?

😸 1929_ProcRoySoc_124_1929_425_Mott_ElScatt	2023. 03. 26. 22:03	Adobe Acrobat do	2 302 KB					
🛃 1932_ProcRoySoc_135_1932_429_ Mott_ElPolarizDoubleScatt	2020. 08. 26. 11:30	Adobe Acrobat do	3 463 KB	1957_AnnPhys2_1957_129_Miller_Scatt	2023. 10. 19. 1	8:39 Ado	be Acrobat do	1 553 KB
불 1948_PR74_1948_1759_McKinley_2ndBornScatt	2023. 03. 26. 19:01	Adobe Acrobat do	709 KB	불 1957_PR_105_1957_1353_Hahn_Neighbo	2003. 12. 10. 1	6:52 Ado	be Acrobat do	500 KB
불 1951_ProcRoySoc_206_1951_509_Dalitz_HighBornApprox	2023. 03. 22. 12:37	Adobe Acrobat do	2 286 KB	🛃 1965_PLett_17_1965_320_Peterson_Disp	2023. 10. 19. 1	2:49 Ado	be Acrobat do	299 KB
🛃 1955_PR_98_756_Schiff_Dispersion	2023. 11. 22. 17:39	Adobe Acrobat do	904 KB	🛃 1969_PRLett23_1969_1122_Madsen_162	2023. 05. 13. 1	2:31 Ado	be Acrobat do	596 KB
1956_PR_101_1956820_Downs_2ProtonCorrelation	2023. 11. 22. 18:18	Adobe Acrobat do	1 004 KB	🛃 1970 NPA 150 1970 631 Sick Elscatt12C	2023. 10. 20. 1	9:56 Ado	be Acrobat do	1 162 KB
불 1956_PR_102_1956537_Lewis_ElScatt2ndBornApprox	2023. 03. 18. 13:16	Adobe Acrobat do	725 KB	1971 NPA 168 1971 97 Madsen ElScat	2023 02 04 1	2·24 Ado	he Acrobat do	2 114 KB
🖢 1956_PR_102_1956544_Lewis_ChargeFluctElScatt	2023. 03. 19. 10:58	Adobe Acrobat do	1 150 KB	► 1072 NDA 216 1072 205 Cordman ElSea	2023. 02. 04. 1	2.24 Ado	be Acrobat do	
불 1957_NuovoCim5-5_1957_Schiff_ProtonCorrelElScatt	2023. 11. 22. 17:53	Adobe Acrobat do	748 KB	₩ 1973_NPA_210_1973_285_Caloman_Elsca	2023. 10. 20. 2	.3:03 Ado	be Acrobat do	1 400 KB
불 1959_PR_115_1959_457_Krall_DispCorr2H4He12C	2023. 10. 17. 18:53	Adobe Acrobat do	769 KB	19/3_NPA_216_19/3_312_Kalinsky_ElScat	2023. 05. 16. 1	1:57 Ado	be Acrobat do	1 184 KB
🛃 1960_NP15_196092_Gottfried_DispCorrHeavy Nuclei	2023. 10. 11. 16:27	Adobe Acrobat do	484 KB	1974_Maas_ThesisUnivAmsterdam_142-1	2023. 10. 21. 1	3:46 Ado	be Acrobat do	2 077 KB
불 1961_NuovoCim_20-6_1961_1198_Goldberg_MagneticDispCorr4He	2023. 04. 03. 12:30	Adobe Acrobat do	685 KB	🛃 1980_PLettB91_1980_203_Cardman_EIS	2023. 02. 11. 1	1:54 Ado	be Acrobat do	289 KB
1961_PR_122_1961_1330_Rawitscher_ScattElPositron	2023. 10. 19. 19:19	Adobe Acrobat do	683 KB	🛃 1982_PLettB_116_1982_212_Sick_ElScattE	2023. 04. 16. 1	2:58 Ado	be Acrobat do	303 KB
🛃 1963_PLett3-4_1963_Bisiacchi_2ndBornApproxElScatt	2023. 04. 03. 22:14	Adobe Acrobat do	198 KB	🛃 1982 PRC 26 1982 806 Reuter 12C FB	2023. 02. 08. 1	8:42 Ado	be Acrobat do	2 020 KB
1964_PR_133_1964_B1162_Eichler_VirtualDipoleTransitions	2023. 03. 23. 13:19	Adobe Acrobat do	522 KB	A 1986 PRI ett 57 1986 1546 Offermann	2023 10 22 1	2·32 Ado	be Acrobat do	1 225 KB
🛃 1964_PR_135_1964_Br377_Fischer_ElMuScatt	2023. 10. 19. 19:45	Adobe Acrobat do	702 KB	1900_Interr_pr_1900_1910_Onernam	2022 10 22 2	2:01 Ado	be Acrobat do	16 010 VD
🛃 1965_PLett_14_1965_140_Bishop_DispCorrElScatt16O	2023. 03. 19. 20:39	Adobe Acrobat do	187 KB		2023. 10. 22. 2	.5.01 Auo	be Acrobat do	
🛃 1966_AdvPhys15_19661_deForest_ElScattNuclStruct	2023. 11. 21. 22:26	Adobe Acrobat do	4 964 KB	1989_PRLett63_1989_2032_KalantarN_1	2023. 02. 09. 1	1:55 Ado	be Acrobat do	303 KB
🛃 1966_NP89_1966_192_Bottino_DispCorr	2023. 03. 21. 19:57	Adobe Acrobat do	957 KB	1989_ZPhysA_334_377_Angeli_Difference	2023. 02. 09. 1	3:02 Ado	be Acrobat do	1 869 KB
🛃 1966_PR_151_1966846_Rawitscher_MonopExcitCorrElScatt	2023. 03. 23. 20:46	Adobe Acrobat do	1 484 KB	🛃 1991_PRC44_1096_Offermann_12C_EISc	2023. 02. 10. 1	2:25 Ado	be Acrobat do	3 933 KB
🚡 1968_NPA_118_1968_436_Onley_DispCorrElScatt	2023. 10. 12. 17:59	Adobe Acrobat do	534 KB	🛃 1991_PRLett66_1991572_Breton_ElPos	2023. 10. 24. 1	4:02 Ado	be Acrobat do	759 KB
🛃 1969_PR_186_1969_1044_Toepffer_HighOrderElScatt	2023. 10. 12. 18:09	Adobe Acrobat do	1 618 KB	1998_PRC57_1998_2107_Gueye_DispEff	2023. 10. 24. 1	7:10 Ado	be Acrobat do	73 KB
1970_PLettB_32_1970_12_deForest_DispCorr	2023. 03. 25. 15:10	Adobe Acrobat do	239 KB	2014 ActaPhysDeb 48 100 Angeli Disp	2023, 10, 24, 1	7:25 Ado	be Acrobat do	620 KB
1970_PRLett_24_1970_1131_Toepffer_OptPotElScattDispCorr	2023. 04. 09. 12:27	Adobe Acrobat do	377 KB	▲ 2020 EPIA 56 2020 126 Rossileff DispC	2022 10 24 2	0:50 Ado	be Acrobat do	1 919 1/2
1971_PLettB_34_1971_187_Bottino_DispEffLowEnElectrons	2023. 03. 25. 20:25	Adobe Acrobat do	293 KB		2023. 10. 24. 2	0.50 Ado	be Acrobat do	107 KD
1972_NPA_178_1972_593_Bottino_DispCorr	2023. 01. 30. 21:28	Adobe Acrobat do	1 038 KB	2020_EPJA56_2020_228_RossiJeff_Erratu	2023. 02. 12. 1	2:46 Ado	be Acrobat do	187 KB
1972_PLettB39_1972_615_Friar_16O12CDispCorr	2023. 10. 10. 20:04	Adobe Acrobat do	278 KB	A 1950 DR 90 1950 171 Heidmann QuasiDeuteron	Andel Absztrakt	2022 06 08 18:20	Adobe Acrobat do	919 V P
1973_NPA_216_1973_477_Rosenfelder_DispCorrEiconal	2023. 04. 03. 18:18	Adobe Acrobat do	735 KB	A 1974 NPA 229 1974 93 Schier PhotoDisintegratic	n12CEvn	2023.00.00.18.23	Adobe Acrobat do	77 KB
1974_AnnPhys_87_1974_289_Friar_DispCorr12C160	2023. 04. 03. 18:32	Adobe Acrobat do	1 787 KB	1948 CRend 266 1948 1716 Heidmann MezonMagree	akcióNukleonPár	2023. 06. 08. 14:58	Adobe Acrobat do	3 400 KB
1974_NPA_229_1974_333_Knoll_TransversDispCorrElScatt	2023. 04. 03. 18:39	Adobe Acrobat do	478 KB	1950_PR_78_1950_115_Levinger_DipoleTransitions		2023. 05. 16. 19:27	Adobe Acrobat do	1 807 KB
1974_PRC_10_1974_2002_Mercer_152Sm154SmElScattDispCorr	2023. 10. 13. 17:39	Adobe Acrobat do	1 018 KB	2 1951_PR84 195143_Levinger_HighEnNuclPhotoeffe	ct	2023. 05. 16. 21:23	Adobe Acrobat do	2 026 KB
1975_NPA_240_1975_301_Friar_12CEIScattDispCorr	2023. 10. 15. 13:01	Adobe Acrobat do	2 457 KB	🛃 1955_PR_97_1955_970_Levinger_SumRulesDeuteronP	notoDisintegrat	2023. 05. 17. 15:32	Adobe Acrobat do	1 030 KB
1975_PLettB_58_1975_397_deForest_DispCorrClosureApproximation	2023. 04. 03. 20:17	Adobe Acrobat do	393 KB	1975_NPA_251_1975_479_Ahrens_NuclPhotoAbsXSect		2023. 05. 13. 13:58	Adobe Acrobat do	681 KB
1976_NPA_257_1976_403_Friar_UnitarityBreitAmplDispCorr	2023. 10. 14. 11:10	Adobe Acrobat do	477 KB	🛃 1979_PLettB82_1979_181_Levinger_ModifiedQuasiD	euteronModel	2023. 05. 17. 22:00	Adobe Acrobat do	109 KB
1977_PRC_15_1977_1786_Mercer_40Ca44CaCoupledChannelDispers	2023. 10. 14. 11:24	Adobe Acrobat do	1 091 KB	1989_EPLett9_1989_523_Terranova_PhotoabsorpXS	ection	2023. 04. 11. 11:26	Adobe Acrobat do	380 KB
1980_ProcIntSchoolAriccia1979_Friar_DispRecoilElScatt	2023. 11. 21. 19:26	Adobe Acrobat do	5 074 KB	🛃 1992_JPG_18_1992_1933_Gangopadhyay_QuasiDeutN	lodelTrinucleon	2023. 06. 08. 20:53	Adobe Acrobat do	588 KB
1980_ProcIntSchoolAriccia1979_Friar_Régi_Jegyzetelt	2023. 01. 14. 19:32	Adobe Acrobat do	772 KB	1993_JPG_19_1993_1417_Gangopadhyay_Add-QuasiE	eutModel	2023. 06. 08. 21:11	Adobe Acrobat do	329 KB
Ig98_EPJ_A2_199829_Herrmann_DispCorrElDeutScatt	2023. 04. 12. 14:31	Adobe Acrobat do	945 KB	2000_JPG_26_2000_1873_Levinger_QuasiDeuteronMo	del	2023. 06. 08. 19:06	Adobe Acrobat do	80 KB
2023_EPJA_59_2023_57_Jakubassa-Amundsen_DispCorrElScatt	2023. 10. 16. 20:47	Adobe Acrobat do	589 KB	2002_NPA_699_2002_255_Levinger_50YearsQuasiDeute	eronModel_	2023. 11. 18. 14:21	Adobe Acrobat do	273 KB
2023_PRC_108_2023_034314_Abst_Jakubassa-Amundsen 208Pb EIS	2023. 12. 16. 17:45	Adobe Acrobat do	103 KB	2022_PKC_106_2022_024324_fropiano_QuasiDeuteron	wodelkenorm	2023. 04. 08. 20:41	Adobe Acrobat do	1 108 KB

<u>Theory</u> \approx 40 papers

1954, Lewis: Thesis, Univ. Michigan (unpublished)

1955, Schiff: *PhysRev.* **98** (1955) 756. "Small but not negligible…"

1959, Krall: *PhysRev.* 115 (1959) 457. *"*The change in R₀ deduced from experiment when dispersive effects are included:
²H: -0.01 fm. ⁴He: -0.08 fm. ¹²C: -0.05 fm."

1966, Bottino: NuclPhys. 89 (1966) 192.

"Dispersion effects of the **order of 1/Z** are found **at the diffraction minima** of the form factors …" 1971, Bottino: PhysLett. 34B (1971) 187.

"The experimental determination of <r²> by means of a purely static model yields an **overestimate**. The corrections in percentage:

²H: -1.5 %, ¹²C: -1.0 %."

1972, Bottino: NuclPhys. A178 (1972) 593.

"The static interpretation leads to an underestimate of the radii. Dispersive effects decrease roughly as 1/A."

²H: 1.3 %, ⁴He: 0.7 %, ¹²C: 0.6 %, ⁴⁰Ca: 0.5 %.

1975, DeForest: PhysLett. 58B (1975) 397.

"Dispersion corrections are presently the greatest theoretical obstacle to precision analysis of elastic electron scattering data."

"These effects depend on the complete dynamical structure of the nucleus and **are not well understood** at the present time." 1980: Friar: Proc. Int. School, Ariccia, (1979) 143.

 "Two of the least understood and more complicated subjects in the field of electron scattering are the topics of dispersion and recoil corrections."

"Different formulations of the dispersion effect make comparison of calculated results very difficult." "A **static nucleus** presents the same shape at each instance of time."

"The behavior of an actual nucleus is determined by the induced dipole moment D, and the

characteristic frequencies of oscillations by D."

(a)

[See papers on: "Quasi-deuteron model"]

Dispersion effects are attractive and react on the electron

These **1b and 1c contributions are just the dispersion corrections** to elastic scattering.

The fitted rms radius is then given in terms of **the "real" radius <r²>^{1/2}** by the approximate relationship:

$$< r^{2} > \frac{1}{2}_{eff} \approx < r^{2} > \frac{1}{2} + \Delta r$$

<u>For ¹⁶O</u> with approximations, an upper bound on the dispersion effect:

 $\Delta r = -7.10^{-3}$ fm.

<u>For ¹²C</u> where exact numerical calculations have been performed: $\Delta r = -(2-3).10^{-3} \text{ fm.}''$

Experiment ≈ 30 papers

1969, Madsen: PhysRev. 17 (1969) 1122.

ANOMALOUS ELECTRON SCATTERING FROM Nd¹⁴²

"Dispersion corrections should be applied to our data."

1970, Sick: NuclPhys. A150 (1970) 631.

"The presence of <u>dispersion effects</u> appears to be necessary to explain the cross sections of ¹²C and ¹⁶O in the sharp first diffraction minimum." 1982, Reuter: PhysRev. C26 (1982) 806.

Theoretical results differ, - even in the sign of the effect!

Applying a crude estimate for dispersion corrections, increases the rms radius of ¹²C by 4 am. 1988, Offermann: *Thesis, University of Amsterdam* (1988).

"DISPERSION EFFECTS IN ELASTIC ELECTRON SCATTERING FROM ¹²C"

The dispersion corrections increase the ¹²C rms radius with: +0.007 (+0.007/-0.011) fm.

1989: Mass Number Dependence of the Difference (r_{el} – r_{mu}).
 A Dispersion Effect in Electron scattering? (*Zeitschrift für Physik*, **334**, 377)

"The weighted average of $(r_{el} - r_{mu})$ differences for 85 nuclides:

Acta Physica Hungarica 69 (3-4), pp. 233-247 (1991)

EVALUATION PROCEDURE FOR NUCLEAR RMS CHARGE RADII* **

I. ANGELI

In this way, RMS radii were collected. To take into account dispersive effects in electron scattering, a correction term [40]

$$dR_{dc} = 12.0 - 0.27 A(\pm 0.025) \text{ (am)}$$

was added to RMS radii measured by fast electron scattering. At the beginning,

1998: Herrmann: *EurPhysJ.* A2 (1998) 29.

"For the deuteron charge radius our dispersion corrections lead to a decrease of

²H: -0.003 fm."

"In [Bottino 1972] **the sign** of the correction to the rms-radius **seems to be wrong**."

The <u>true rms-radius is smaller</u> than the one obtained by analyzing the scattering data in a static framework." INTERNATIONAL ATOMIC ENERGY AGENCY

INDC(HUN)-033 Distr.: ND+G

INDC INTERNATIONAL NUCLEAR DATA COMMITTEE

TABLE OF NUCLEAR ROOT MEAN SQUARE CHARGE RADII*

The ten-year-old "deuteron radius discrepancy" [Kl86, Wo94] seems to have been solved by [Si96 and Si98] applying the Coulomb distortion correction. In our previous paper [An98] a dispersion correction of +0.008 fm was also added estimated from early theoretical calculations [Bo72, Fr79], the only experimental result for 12 C [Of88, Of91] and a systematic analysis of the R_{el} - R_{mu} differences [An89]. However, a recent, precise calculation [He98] resulted in a net dispersion correction of – 0.003 fm. Therefore, in the present work no dispersion correction was applied.

Normalizations to proton

1987: At. Data Nucl. Data Tables, **36**, 495. deVries: Electron scattering

Nucleus	model	<r<sup>2>^{1/2} [fm]</r<sup>	cora [fm]	zorα [fm]	w	q-range [fm ⁻¹]	ref.	remarks
n*		0.3359(36) 0.3455(26)				0 0	Kr73 Ko76	1 1
1 _H *	MI MI MI	0.85(2) 0.84(1) 0.862(12)				0.33 - 1.42 0.36 - 11.50 0.36 - 1.18	Th72 Ho76 Si80	a,2 3 4
2 _H *	MI MI	2.095(6) 2.116(6)				0.22 - 0.71 0.21 - 0.77	Be73a Si81	a,h,5 h,6
3 _H *	FB SOG	1.68(3) 1.76(4)				0.51 - 2.83 0.55 - 4.79	Be84 Ju85	†,b,7 \$,8
³ He*	SOG FB MI	1.844(45) 1.877(19) 1.976(15)				0.59 - 4.47 0.18 - 10.1 0.45 - 1.92	MC77 Re84b Ot85	\$ †,9 a <mark>,h,</mark> 10

h) • Measurement relative to $^{1}H_{-}$

h in 53 remarks!

1963, Hand: Cross section evaluation $< r^2 > 1/2 = 0.805 (11) \text{ fm}.$ r_{p} (fm) 0.92 -1980, Simon: Electron scattering Melnikov, 2000 1S Lamb shift 0.90 - $< r^{2} > 1/2 = 0.862 (12) \text{ fm}.$ Sick, 2003 0.88 -Simon, 1980 2000, Melnikov: 1S Lamb shift 0.86 - $< r^2 > 1/2 = 0.883 (14) \text{ fm}.$ 0.84 -0.82 -2010: Pohl: Muonic H Lamb shift 0.80 Hand, 1963 $< r^{2} > 1/2 = 0.84184$ (67) fm. 0.78 Years 1970 1980 1990 2000 2010 1960 "Proton radius puzzle!"

What to do?

Renormalize the original data? If they exist? Who?

Nature, **575**, (2019) 174: Xiong, ... Electron scattering! $r_p = 0.831 (7)_{stat} (12)_{syst} fm.$

Estimate common systematic error? How?

Other ideas?

The proton radius in charge radii

To the attention of authors and referees!

$$r_c^2 \approx r_p^2 + < r^2 >_p ...$$

The second term depends on time!

1963: $< r^2 > 1/2 = 0.805(11)$

1980: $< r^2 > 1/2 = 0.862$ (12) fm.

Nucl. Phys. A624 (1997) 349:

2000: $\langle r^2 \rangle^{1/2} = 0.883$ (14) fm.

2010: $\langle r^2 \rangle^{1/2} = 0.84184$ (67) fm.

Braz. Journ.Phys. 54 (2024) 105:

Phys. Rev. C109 (2024) 054323:

 $r_c^2 \approx r_p^2$ + **0.64 fm²**

 $r_c^2 \approx r_p^2 + 0.64$ (without unit!) $r_c^2 \approx r_p^2 + (0.8 \, fm)^2$ Future?

Weak and strong

<u>Nucleus = protons + neutrons</u>

Electric charge = 1 = 0

Weak charge $\approx 0 \approx 1$

Beta-decay, *Fermi* \rightarrow *"weak interaction"*!

Electrons have <u>electric</u> and <u>weak</u> charges.

 \rightarrow neutron-distribution determination!

Two simultaneous interactions.

How to separate them?

The weak interaction scatters <u>electrons of different polarization differently</u>!

The electromagnetic interaction does not make difference to polarization.

→ Scattering of polarized electrons!

Laser beam of circular polarization \rightarrow

→ *GaAs* semiconductor crystal, photo-effect

\rightarrow electrons take over the (linear) polarization!

Scattering \rightarrow *"right"* (R) electron beam, scattering \leftarrow *"left"* (L) electron beam. T.W. Donnelly et al. / Isospin dependences

Simultaneous elektromagnetic and weak interactions with sattering amplitudes

 $a_E a_{WR} a_{WL}$

The cross sections are:

$$\sigma_{R} = (a_{E} + a_{WR})^{2} = a_{E}^{2} + 2 a_{E} a_{WR} + a_{WR}^{2}$$
$$\sigma_{L} = (a_{E} + a_{WL})^{2} = a_{E}^{2} + 2 a_{E} a_{WL} + a_{WL}^{2}$$
$$\sigma_{R} - \sigma_{L} \approx 2 a_{E} \times (a_{WR} - a_{WL})$$

Interference - through *a_E* - renders observation possible!

"Parity Violating Asymmetry"

$$A_{\rm PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_W(Q^2)}{F_{\rm ch}(Q^2)}$$

contains the weak (\approx neutron) form factor $F_W(q)$

G_F Fermi-constant,

Q momentum transfer,

F_{ch}(q) known.

Cross section ratio eliminates systematic errors!

Phys.Rev.Lett. 126 (2021) 172502: Adhikari, et al. ...

Jefferson Laboratory.

 $A_{PV} \rightarrow R_n - R_p$ "neutron skin" \approx 0.28 (± 0.07) fm.

J.Phys. **G6** (1980) 303.

Sic itur ad astra!

For ²⁰⁸*Pb,* from asymmetry

$$\rightarrow R_n - R_p$$
 "neutron-skin" \approx **0.28 fm**.

$$\rightarrow \quad S \text{ symmetry energy,} \rightarrow L \sim \frac{\partial S}{\partial \rho}$$

\rightarrow **R**_{NS} radius of neutron star!

"Giant nucleus" held together by gravitation.

10% protons

Experiments:

Phys. Rev. Letters, **108** (2016) 112502.: Abrahamyan, ...

Phys. Rev. Letters, **126** (2021) 172502.: Adhikari, ...

Review, short:

Nuclear Physics News, **34** (2024) 34.: Mammei, ...

Reviews, detailed:

Frontiers in Physics, 11/1 (2016) 111301.: Souder, ...

Annual Rev. Nucl. Part. Phys. 74 (2024) 321.: Mammei, ...

Thank you for your attention!