Precise nuclear charge radii via bound electron g factor measurements

Fabian Heiße

Max-Planck-Institut für Kernphysik

Compilation & Evaluation of Nuclear Charge Radii

ERC AdG 832848 - Funl

DFG SFB 1225

How to test a theory with precision measurements?

- Theory predicts observable

 experiment <u>confirms</u> or <u>falsifies</u>
 hint for new physics ?!
- Any fundamental theory can only predict <u>dimensionless quantities</u>
- Reliable fundamental constants including nuclear properties are absolutely essential

Harvest the rich potential of our strong field mini laboratories aka inner electrons + nuclei

Hydrogen-like ion in strong fields

Precise nuclear charge radii accessible

Overview

- Measurement principle
- ALPHATRAP Experiment
- $g_j(^{118}Sn^{49+})$ measurement
- Direct g-factor difference measurement of ²⁰Ne⁹⁺ and ²²Ne⁹⁺
- Summary & Outlook

Measurement principle

Experimental Tool: Penning trap

- Measurement of cyclotron frequency:
 - \rightarrow Homogeneous & static magnetic field
 - \rightarrow Electrostatic quadrupole potential for trapping

• Cyclotron frequency via the invariance theorem:

$$v_c = \sqrt{v_+^2 + v_z^2 + v_-^2}$$

Brown & Gabrielse, Phys. Rev, A **25**, 2423 (1982)

-0-

Non-destructive Eigenfrequency Detection

• Measurement of induced image currents (~ fA) on trap electrodes

Non-destructive Spin state detection

Analysis Trap (AT)

 $\nu_L \sim 110 \text{ GHz}$

ferromagnetic ring

Magnetic field inhomogeneity

$$B_2 = 45 \text{ kT} \cdot \text{m}^{-2}$$

Microwave access

- Magnetic bottle makes the axial frequency spinstate dependent
- Spinflip is driven by resonant microwave excitation

Overview

- Measurement principle
- ALPHATRAP Experiment
- g_j(¹¹⁸Sn⁴⁹⁺) measurement
- Direct g-factor difference measurement of ²⁰Ne⁹⁺ and ²²Ne⁹⁺
- Outlook

Max Planck Institute for Nuclear physics

Highly charged ion sources at MPIK

EBIT facility

→ Access to highly charged ions

Thanks to the José Crespo group

Current production status:

- all H-like ions up to ¹³²Xe
- all Li-like ions up to ²³⁸U

Electron beam ion traps (EBIT)

- Ionisation energy provided by electron beam energy
- Beam current ~ ampère
- Ions confined by magnetic field + electrodes + beam space charge
- Charge breeding takes ms-min

ALPHATRAP setup

- 4T magnet
- 4 K Setup
- Pressure below 10⁻¹⁶ mbar

Penning trap tower

Capture electrodes

- Potential switching
- Dynamic ion capture/storage

Precision trap

- 18mm diameter
- 7-electrode trap
- Homogeneous *B*-field: measure $\Gamma = \omega_L / \omega_c$

Analysis trap

- 6mm diameter
- Ferromagnetic ring electrode: spin detection

Microwave horn

- mm wave coupling
- Laser access

Overview

- Measurement principle
- ALPHATRAP Experiment
- g_j(¹¹⁸Sn⁴⁹⁺) measurement
- Direct g-factor difference measurement of ²⁰Ne⁹⁺ and ²²Ne⁹⁺
- Summary & Outlook

Current status

Picture from IAEA

Current status

IAEA – Fabian Heiße

g factor measurement cycle

Resonance for $g_j(^{118}Sn^{49+})$

Transistion probability as a function of $\frac{\omega_L}{\omega_c}$

Maximum-Likelihood fit of the data

Thanks to the theoreticians

J. Morgner et. al. Nature 622, 53 (2023)

We also measured $g_i(^{118}Sn^{47+}) \& g_i(^{118}Sn^{45+})$

g-factor contribution ¹¹⁸Sn⁴⁹⁺

• Nuclear parameters (radius, polarization, ...) are accessible

Overview

- Measurement principle
- ALPHATRAP Experiment
- g_j(¹¹⁸Sn⁴⁹⁺) measurement
- Direct g-factor difference measurement of ²⁰Ne⁹⁺ and ²²Ne⁹⁺
- Summary & Outlook

Direct g-factor difference measurement of ²⁰Ne⁹⁺ and ²²Ne⁹⁺

Controlled ion crystal in a Penning-Trap

Measure the g-factor difference in a decoherence-free subspace

Achieve high accuracy compared to a "typical" g-factor measurement

T. Sailer et al., Nature 606, 479 (2022)

Coherent g_1 - g_2 difference measurement

B

- Magnetic field fluctuations quickly (~ms) render Larmor precession incoherent
- Crystallized ions see the <u>identical</u> field
 - The phase difference (correlation) stays coherent (>seconds!)

$$p(|\downarrow\downarrow\rangle \rightarrow |\uparrow\uparrow\rangle) = \cos\left(\left(\omega_{1} - \omega_{rf}\right)t\right)^{2} \times \cos\left(\left(\omega_{2} - \omega_{rf}\right)t\right)^{2} = \frac{1}{4}\left[\cos(2(\omega_{1} - \omega_{2})t) + \cdots\right]$$

Small difference

Direct g-factor difference measurement of ²⁰Ne⁹⁺ and ²²Ne⁹⁺ T. Sailer *et al.*, Nature **606**, 479 (2022)

 Two order of magnitude improvement for comparing g factors (most precise difference of g factors)

Ø

Direct g-factor difference measurement of ²⁰Ne⁹⁺ and ²²Ne⁹⁺ T. Sailer *et al.*, Nature **606**, 479 (2022)

Theoretical *g* factor ²⁰Ne⁹⁺ 1.998 767 276 921(117) ²²Ne⁹⁺ 1.998 767 263 446(117) Theoretical difference (x 10⁻⁹) Nuclear size 0.166(11)Recoil, non-QED 13.265 Recoil, QED 0.044 Total 13.474(11)13.475 24(53)_{stat}(99)_{svs} **Experiment**

- Perfect agreement with theory at 5 x 10⁻¹² level
- Confirmation of QED recoil contribution in g factors!
- Factor 9 improved rms nuclear charge radius difference

Lit:
$$\delta \langle r^2 \rangle^{1/2} = 0.0530(34) \, \text{fm}$$

New: $\delta \langle r^2 \rangle^{1/2} = 0.0533(4) \, \text{fm}$

 $\sim 6 \times 10^{-13}$ precision relative to the *g* factor

4x improvement still possible

Bounds on New Physics

- Limit mediator boson mass for Higgs portal Yukawa force
- Higgs portal mechanism involves the coupling of a potential new scalar boson with the Higgs boson
- Limit on the coupling strength $y_e y_n$

Summary

- Ion production of medium-to-high hydrogenlike ions
- H-like g factors up to ¹³²Xe & all Li-like g factor up to ²³⁸U & g factor differences below 10⁻¹⁰
- Potential to improve nuclear charge radius for nuclei with Z > 50

- Measure g-factor differences of ^{20,22}Ne⁹⁺ with extremely high precision (~10⁻¹³)
- > 9x improved rms charge radius difference
- Limits on "New Physics"
- Different Isotope shifts measurements possible

Outlook

Hyper-EBIT

 Produce hydrogenlike ions beyond lead

Planned Specifications	
Electron beam energy	200keV
Beam current	>200mA

Moving the EBIT to the test laboratory

High voltage laboratory

- First commissioning after long shutdown
- Currently: High-voltage upgrade

Lepton Symmetry Experiment LSYM o **Sven Sturm** erc European Research Counci

Where did all the antimatter go?

- > Uniquely stringent CPT test with LSYM:
 - **q/m** (direct) 1,000,000x better
 - g-factor: >50x better

Established by the European Co

...than any previous experiment

Method:

Nuclear charge radius determination for low Z possible

FUTURE: Network of Precision for HCI

Precise nuclear parameters (charge & magnetic radius, polarization, ...)

Thank you for your attention!

Questions?

IAEA – Fabian Heiße

