

Appalachian

FRIB

CHARGE RADII OF NUCLEI BY EUV AND X-RAY SPECTROSCOPY OF HIGHLY CHARGED IONS

∂TRIUMF

Endre Takacs

Hunter Staiger, Steven Blundell, Dipti, Gerald Gwinner, Roshani Silwal, Alain Lapierre, John Gillaspy, Galen O'Neil, Joseph Tan, Yuri Ralchenko

1

TECHNICAL MEETING ON "COMPILATION AND EVALUATION OF NUCLEAR CHARGE RADII", IAEA HEADQUARTERS, VIENNA, JANUARY 27-30, 2025

Outline

- Note on the Flowchart of the Angeli 2004 Charge Radius Evaluation
- Highly Charged Ions
- Short history of electron beam ion traps
- Spectroscopy of highly charged ions
 - EUV, X-ray
- Nuclear Charge Radius Landscape
- Measurements Using Highly Charged Ions
 - Previous Methods
 - Nuclear Charge Radius Difference Na-like Ion Spectroscopy
 - Absolute Nuclear Charge Radius Na-like Ion Spectroscopy
- Cross-element constraints
- Future Directions

				Mu	onic d	ifferen	ce me	easurem
				KIS	differe	ence m	easur	ement
				OIS	differe	ence m	neasu	rement
	\sim		(⊖ diffe	erence	radiu	5	both
<u></u>	~			abs	olute r	adius		h - 4h
0	0-	- ≪		-0-	\sim	0		
0	0-	-0	-0	~				

ELECTRON BEAM ION TRAP HISTORY

Figure 1. The NIST EBIT, just before final assembly of the 6 major subsections (clockwise from the bottom: electron gun, drift tube assembly, collector, liquid helium insert, liquid nitrogen shield, outer vacuum can).

1992 NIST-NRL EBIT

ELECTRON BEAM ION TRAP HISTORY

Strategic Defense Initiative

Nicknamed as **Star Wars Program**, was first initiated on March 23, 1983 under President Ronald Reagan. The intent of this was to develop a sophisticated anti-ballistic missile system in order to prevent missile attacks from other countries, specifically the Soviet Union.

Mort Levine and Ross Marrs 1989 with the first EBIT

NEW COMPACT EBIT SOURCES

Hoogerheide and Tan, Journal of Physics: Conference Series **583** (2015) 012044

OPTICAL CLOCK BASED ON Ar¹³⁺ HCI (PTB AND MPI)

MOTIVATIONS FOR A NEW CHARGE RADIUS MEASUREMENT METHODS

															•••••																				
													i i i i i i i i i i i i i i i i i i i																						
											- int																								
										1																									
									-																										
							····	æ	•																										
									•••																										
					.														-				100) Fm											_
																							99	Es									_		
				*																			98	Cf											
																							97	Bk											
																							96	Cm							Ð	<u>-</u> ⊖-		ə	O
	4	<u>-</u>																					95	Am							e -	- @			
		*																					94	Pu					Đ	-0	-00	эө.		Ð	
		·																					93	Np											
																							92	U			-Co-		0		-⊙●				
																							91	Pa											
										90	Th												90	Th		⊖ ∈									
										89	Ac						_																		
										88	Ra	Đ	- 0(90-		· θ Θ				€	D0	- - 0	∂ Θ-	0	-0	0C)O-		·-•						
										87	Fr	0 -	- 0	0Θ-	Θ	00						-@	90-		-0	ΘG)0								
	•									86	Rn																								
	WI	ngs	(seco	ndar	y)		_			85	At						_	128 129	9 130	131 13	32 133	134 ·	35 136	5 137	138	139 14	0 141	142 14	3 144	145	146 14	47 148	3 149 1	50 15	51 152
		-				84	Po			84	Po			0 0	0		~		_					_											
97 Dh	0.0					0.0	ы	<u> </u>	<u> </u>	0	<u> </u>		0					<u> </u>																	
02 FD 91 TI	00		0-10-10	0-0	0.0	0.0.0	-00										0	0 0																	
80 Ha	<u></u>		<u> </u>				- <u>-</u>			- A - 6			Š				_		_																_
79 Au				<u></u>	-00-		-00					$\not\models$	<u>م</u>		<u>1</u>																				-
78 Pt				- 0			<u>.</u>			•		• 0			ł	າລດ	kho	ne	(nr	ima	rv/												+		
77 Ir			-0-		-00-		-0		·•e							Juc	KD(ιPI	nna	чу)								-				+		
76 Os					0	0.0	• •		•0	,																									
75 Re						o																													
74 W				Ø	>.●		-•0	114 1	15 116	6 117	118 1 [.]	19 120	121 1	122 123	3 124	125 12	6 127	128																	
73 Ta					<•																														a
72 Hf		Đ		~ •	⊸																														3

MOTIVATIONS FOR A NEW CHARGE RADIUS MEASUREMENT METHODS

- Except for a few isotopes, no **absolute** charge radius measurements for unstable isotopes exist heavier than Bi.
 - The absolute charge radii of francium, radium, and radon have never been measured.
 - <u>Apparent reason</u>: current techniques (electron scattering / muonic x-ray spectro.) need macroscopic quantities.

															100 F	m									
						•					• • •				99 E	s									
	0	rew tec	nniques c	ieat wi	th micro	oscopic	amo	unts (I.e	e., ki el	emen	τs).				98 C	f									
															97 E	k									
															96 C	m					Ð	·	·	o	·-0
															95 A	m					Đ				
	\sim	Storage	ring hasa	d alactr	on scatt	toring m	athad	d is tha c	only one	nhhe e	occin	o tha	t i		94 F	u				0Q-	·C	,0		Ð	
	0	Storage	The base		Un scati	lenng m	ethot		Jinty One	auui	Coolin	ig ula			93 A	lp i									
		(SCRIT r	project).												92 (j) - 07						
			10,000,												91 F	a			-						
							90 Th								90 7	'n	00-		Ð						
							89 Ac																		
							88 Ra	ĐĐ-Đ		0			D	э	- <u>0</u> e)	00-	- 00)	÷					
							87 Fr	000	⊖ 0 +					90	- - () 0 -	-00-	0							
							86 Rn										-								
		wingo	(cooondo	ry ()			85 At				128 129	130 131 1	32 133 1	34 135	136 1	37 138	139 140	141 1	42 143	144 145	146 1	47 148	149 ⁻	150 151	152
		wings	(seconua	iy)	84 Po		84 Po																		
					83 Bi			Θ		+0															
82	Pb	0000	∋ 0 0 €	· 0 - ↔€) 0 0 0 -	-000	···-	ooœ		>-	-00	006													
81	Π					Θ	······	<u>⊖⊖⊖-</u> -∲		.															
80	Hg	QQ(90000) <u>0</u> <u>0</u> G			0-0	1																	
79	Au		ÐG		···⊖⊝Θ-		••• <u></u>	<u> </u>																	
78	Pt				Đ		• •	 •••	h	ackho	no (r	hrime	$(\mathbf{r}_{\mathbf{v}})$												
77	Ir		-000		·		~					5111110	ч <i>у)</i>												
76	Os			00		••0																			
75	Re			E	·•																				
74	w		Đ		••©	114 115 116	117 118 1	119 120 121 12	2 123 124 12	5 126 127	128														
73	Та			(• <u> </u>																					10
72	Hf	÷																				_			10

NUCLEAR CHARGE RADIUS DIFFERENCE CONSTRAINTS

wings (secondary)

backbone (primary)

Na-like ion measurements

HIGHLY CHARGED IONS AND NUCLEAR CHARGE RADIUS

MEASUREMENTS NEEDED FOR FUNDAMENTAL SYMMETRY TESTS

- Francium and radium are candidates in searches for physics beyond the Standard Model:
 - o Ra-225: Permanent Electric Dipole Moments (EDM)
 - Fr: Atomic Parity Non-Conservation (APNC)
- The absolute charge radii of Fr and Ra were never directly measured.
- The absolute charge radius of Fr in the literature is obtained from extrapolations.
- * Need for absolute charge radius measurements.

M. A. Bouchiat & C. Bouchiat, Rep. Prog. Phys. 60 (1997) 1351

-3.04 - -

Energy (eV)

-5.14

WHY NA-LIKE IONS THEORETICALLY?

14

STATE-OF-THE-ART AB INITIO THEORIES ARE AVAILABLE (RMBPT, MCDHF, S-MATRIX)

TABLE III. Contributions (cm⁻¹) to the total calculated wave numbers σ and their estimated uncertainties for Bi (Z = 83). Values between the dotted lines are from the QED terms.

	$\sigma(D_1)$	Unc.	$\sigma(D_2)$	Unc.
Dirac Hartree Fock	1 559 528	37	6 836 929	41
B(1)	52 830	0	-1481	0
B(rpa)	-1238	0	-299	0
BB(rpa)	-127	0	15	0
Ret(1)	499	0	-8402	0
Ret(rpa)	53	0	-70	0
Other retardation	0	107	0	209
CC(2)	-2616	2	-354	1
BC(2)	-544	1	-265	0
CCC(3)	16	0	-7	0
Nuclear recoil	-68	25	-76	28
SE(val)	-73 091	3	-71 432	3
Uehling (val)	15009	0	17318	0
WK (val)	-657	62	-781	50
SE (val-exch)	983	14	1029	14
VP (val-exch)	-192	0	-200	0
SE (core rlx)	-1697	23	-814	11
VP (core rlx)	334	0	186	0
Other vertex	0	110	0	73
Two-loop Lamb (val)	238	96	222	90
Total	1 549 261	199	6 771 519	249

WHY NA-LIKE IONS EXPERIMENTALLY?

Figure 1: (Left) Plot of transition energies from Z = 20 to Z = 92, with Na-like D1 $3s {}^{2}S_{1/2} \rightarrow 3p {}^{2}P_{1/2}$ [23] (red solid), Na-like D2 $3s {}^{2}S_{1/2} \rightarrow 3p {}^{2}P_{3/2}$ [23] (red dashed), Li-like $1s^{2}2s {}^{2}S_{1/2} \rightarrow 1s^{2}2p {}^{2}P_{1/2}$ [24] (blue solid), Li-like $1s^{2}2s {}^{2}S_{1/2} \rightarrow 1s^{2}2p {}^{2}P_{3/2}$ [24] (blue dashed), H-like $1s {}^{2}S_{1/2} \rightarrow 2p {}^{2}P_{1/2}$ [25] (green solid), and H-like $1s {}^{2}S_{1/2} \rightarrow 2p$ ${}^{2}P_{3/2}$ [25] (green dashed). The shaded blue region indicates EUV range (3 to 30 nm). (Right) Plot of ionization potential necessary to create Na-like (red), Li-like (blue) and H-like (green) ions. The shaded blue region indicates the typical range of optimum electron beam energies used to generate highly charged ions [26]). Hosier et al., Journal of Physics B 57, (2024) 195001 16

MEASUREMENTS USING HIGHLY CHARGED NA-LIKE IONS

EXPERIMENTAL AND THEORETICAL D LINE SEPARATIONS

Silwal R et al., Phys. Rev. A **98** (2018) 052502; Silwal R et al., Phys. Rev. A **101** (2020) 062512

$$\begin{split} \delta E_{k}^{A,A'}(Exp.) &= E_{k}^{A} - E_{k}^{A'} = \text{Mass shift} + \text{Field shift} \\ \delta E_{k}^{A,A'} &= \delta E_{k,MS}^{A,A'} + \delta E_{k,FS}^{A,A'} \\ &= (\text{NMS} + \text{SMS}) \frac{(\text{M}' - \text{M})}{\text{MM}'} + \text{F}\lambda^{A,A'} \\ \delta E_{FS}^{A,A'} &= F_{0}\delta\langle r^{2}\rangle^{A,A'} + F_{2}\delta\langle r^{4}\rangle^{A,A'} + F_{6}\delta\langle r^{6}\rangle^{A,A'} + F_{8}\delta\langle r^{8}\rangle^{A,A'} + \dots \\ &= \left[F_{0} + F_{2} \frac{\delta\langle r^{4}\rangle^{A,A'}}{\delta\langle r^{2}\rangle^{A,A'}} + F_{6} \frac{\delta\langle r^{6}\rangle^{A,A'}}{\delta\langle r^{2}\rangle^{A,A'}} + F_{8} \frac{\delta\langle r^{8}\rangle^{A,A'}}{\delta\langle r^{2}\rangle^{A,A'}} + \dots \right] \delta\langle r^{2}\rangle^{A,A'} \\ &= F\delta\langle r^{2}\rangle^{A,A'} \\ &= F\delta\langle r^{2}\rangle^{A,A'} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle r^{2}\rangle^{A,A'} = \frac{\delta E_{k}^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ \hline \delta \langle$$

ISOTOPICALLY PURE Xe¹³⁶ AND Xe¹²⁴ NEUTRALS WERE INJECTED USING A BALLISTIC GAS INJECTION SYSTEM

- both have zero magnetic moment
- no hyperfine effect
- discrepancy exists between muonic and optical measurements

PROOF OF PRINCIPLE: Xe¹³⁶ and Xe¹²⁴ EUV SPECTROSCOPY

DECADES LONG EXPERIENCE WITH ACCURATE CALIBRATION AT NIST

LINE IDENTIFICATION AND ISOTOPE SHIFT

The systematic drift was fitted with an overall function of piece-wise 3rd order polynomials that included a shift between the isotopes (one hundredth of a pixel) TABLE I. Measured and calculated wavelength values of the isotope shift along with their uncertainties (in units of fm) for the Na-like *D*1 transition $3s^2S_{1/2} - 3p^2P_{1/2}$ for the isotope pair ¹³⁶Xe–¹²⁴Xe. The field shift was calculated using the evaluated value of 0.290 fm² for $\delta \langle r^2 \rangle^{136,124}$ by [20].

			Theor	у					
	RMB	PT	GRASI	Р2К	CIDF [29]	Experiment			
Coefficients	δλ	$\Delta\delta\lambda$	δλ	$\Delta\delta\lambda$	$\delta\lambda$	δλ	$\Delta\delta\lambda$		
NMS	- 4.8	0.2	-4.8	0.2	-4.8				
SMS	- 62.2	3.4	- 62.3	3.4	-62.7				
Total MS	-67.0	3.4	-67.1	3.4	-67.5				
FS	143.0	2.8	142.0	2.8	143.0				
Total	76.1	4.4	75.3	4.4	75.8	65.5	20.6 fm		

NUCLEAR CHARGE RADIUS DIFFERENCE: ¹³⁶Xe – ¹²⁴Xe

Silwal R et al., Phys. Rev. A 98 (2018) 052502; Silwal R et al., Phys. Rev. A 101 (2020) 062512

 $\delta < r^2 > 136,124 = 0.269(42) \text{ fm}^2$

ABSOLUTE NUCLEAR RMS CHARGE RADIUS FROM D LINE SEPARATIONS

Hosier et al., Atoms **11** (2023) 48; Hosier et al., Journal Physics B, **57** (2024) 195001; Hosier et al., Physical Review Research, (2025) **In print**

SPECTRA OF HIGHLY CHARGED Ir AND Os AT 18 keV BEAM ENERGY

EUV spectra of Na-like D1 3s ${}^{2}S_{1/2} - 3p {}^{2}P_{1/2}$ and Mg-like $3s^{2} {}^{1}S_{0} - 3s3p {}^{3}P_{1}$ transitions for both Os and Ir, in orange and blue respectively.

NA-LIKE LEVEL POPULATION MECHANISMS

✓ The Ir and Os in the measurements have the natural abundance of their isotopes.
✓ Isotope with odd number of nucleons exhibit HF structure.

$$\Delta E = \frac{A}{2}K + \frac{B}{4}\frac{1.5K(K+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$$

Ds-184	0.02(1) %	Ir-191	37.3(2) %
Os-186	1.59(3) %	Ir-193	62.7(2) %
Ds-187	1.96(2) %		
Os-188	13.24(8) %		
Os-189	16.15(5) %		
Os-190	26.26(2) %		
Os-192	40.78(19) %		

HYPERFINE STRUCTURE OF THE Na-like Ir AND Os D1 TRANSITIONS

Instrument resolution ~ 440 meV

RESULTS: NUCLEAR CHARGE RADIUS OF ¹⁹¹Ir

 $\delta R_{
m Ir}$

 $\Delta S/S$

 \mathbf{fm}

Hosier et al., Physical Review Research, (2025) In print

Units: eV						
	Os D1 [eV]		lr D1 [eV]		Ir–Os D1 [eV]	
R(rms):	5.4064	fm	5.4000	fm	(interpolation)	
DF	167.470	(0)	171.025	(0)	3.5550	(0)
B(1)	4.746	(0)	4.977	(0)	0.2310	(0)
B(RPA)	-0.118	(0)	-0.122	(0)	-0.0045	(0)
BB(RPA)	-0.011	(0)	-0.012	(0)	-0.0007	(0)
Ret(1)	0.016	(0)	0.020	(0)	0.0045	(0)
Ret(RPA)	0.004	(0)	0.004	(0)	0.0003	(0)
Ret(other)	0.000	(11)	0.0000	(11)	0.0000	(3)
CC(2)	-0.300	(0)	-0.303	(0)	-0.0032	(0)
BC(2)	-0.053	(0)	-0.055	(0)	-0.0019	(0)
BB(2)	0.011	(0)	0.011	(0)	-0.0001	(0)
GGG(3)	0.005	(0)	0.005	(0)	0.0001	(0)
Nuc. Rec.	-0.007	(2)	-0.007	(2)	0.0000	(0)
RMBPT(tot)	171.762	(11)	175.543	(11)	3.7805	(3)
SE(val)	-6.387	(0)	-6.725	(0)	-0.3375	(0)
Uehl(val)	1.162	(0)	1.245	(0)	0.0825	(0)
WK(val)	-0.045	(4)	-0.049	(4)	-0.0041	(4)
SE(val-x)	0.090	(1)	0.094	(1)	0.0041	(1)
VP(val-x)	-0.016	(0)	-0.017	(0)	-0.0010	(0)
SE(core)	-0.153	(2)	-0.161	(2)	-0.0072	(1)
VP(core)	0.027	(0)	0.029	(0)	0.0017	(0)
Other(vert)	0.000	(10)	0.000	(11)	0.0000	(5)
2-loop	0.019	(7)	0.020	(7)	0.0013	(5)
QED(tot)	-5.304	(13)	-5.564	(14)	-0.2602	(8)
TOTAL	166.458	(17)	169.979	(18)	3.5204	(8)
		(38)		(40)		(18)
		(25)		(27)		(12)
TOTAL [no BB(2)]	166.447	(17)	169.968	(18)	3.5205	(8)

$$\delta R_{\rm Ir} = \frac{1}{S_{\rm Ir}} \left[\delta E_{\rm Ir-Os}^{\rm exp} - \left(E_{\rm Ir}^{\rm th}(R_{\rm Ir}) - E_{\rm Os}^{\rm th}(R_{\rm Os}) \right) \right]$$
 5.4307(77) fm

$$\begin{split} & \text{key theoretical} \\ & \text{Uncertainty} \\ & \Delta(\delta R_{Ir}) = \Big[\frac{(S_{Os} \Delta R_{Os})^2}{S_{Ir}^2} + \frac{\left[\Delta [E_{Os}(R_{Os,0}) - E_{Ir}(R_{Ir,0})] \right]^2}{S_{Ir}^2} \\ & \text{experimental} \\ & + \frac{\left[(\Delta E_{Os-Ir}^M)^2}{S_{Ir}^2} + (\delta R_{Ir})^2 \left(\frac{\Delta S_{Ir}}{S_{Ir}} \right)^2 \right]^{1/2} \end{split}$$

Nuclear model dependence

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + exp[(r - c_{def})/a]} \quad c_{def}(\theta,\phi) = c[1 + \beta_2 Y_{20}(\theta,\phi)]$$

$$\delta E(R,\beta_2,t) = \delta R \frac{\partial E}{\partial R} + \delta \beta_2 \frac{\partial E}{\partial \beta_2} + \delta t \frac{\partial E}{\partial t}$$

$$\equiv S \delta R + S_{\beta_2} \delta \beta_2 + S_t \delta t$$

$$\frac{\frac{units}{S} \frac{Na-like D_1}{-0.4557}}{\frac{S_{\beta_2}}{S_t} e^{V} fm^{-1}} \frac{-0.4557}{0.0032} \quad \text{Included in } \Delta S$$

$$\frac{S_2}{S_t} e^{V} fm^{-1}}{\frac{0.17}{\Delta t}} = 0.17 \quad (\Delta S/S) \delta R_{Ir} \approx 0.0016 \text{ fm}$$

0.04

0.5%

Nuclear charge radius measurement of Ir using Os as a reference element

Hosier et al., Physical Review Research, (2025) In print

Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

Nuclear charge radius measurement of Ir using Os as a reference element

Hosier et al., Physical Review Research, (2025) In print

Our measurements combined with optical isotope shift data

NUCLEAR CHARGE RADIUS CROSS-ELEMENT CONSTRAINT

wings (secondary)

backbone (primary)

Na-like ion Ir-Os measurement

Next step: TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN)

Ra-225

32

Future Plans: Improving Precision with XUV Frequency Combs, microcaloriemeter

Future Plans: Improving Precision with XUV Frequency Combs, microcaloriemeter

NIST

Million Martin and

Future is bright! Thank you!