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Shortly about muons and muonic atoms

far from
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207 times
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• Same interaction laws, same formulas
• Heavy sibling of electron; mµ ≈ 207me

• Lifetime 0.1-2.2 µs, capture and decay 10−12 − 10−9 s
• Always hydrogen like, some electrons are far away
• Sensitive to nuclear structure
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2016: restart of muonic physics
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2022: Discovery of muonic fine-structure anomaly

[1] Yamazaki et al., PRL 42, 1470 (1979)
[2] Phan et al., PRC 32, 609 (1985)

[3] Bergem et al., PRC 37, 2821 (1988)
[4] Piller et al., PRC 42, 182 (1990)

Natalia S. Oreshkina IAEA Headquarters, Vienna Heavy muonic theory and RMS 7 / 29



Historical introduction Latest improvements Preliminary results Double checking Additional problems

What is the fine-structure anomaly
Very poor fit of experimental data for 2p3/2,1/2 → 1s1/2
for muonic 90Zr, 112−124Sn, 208Pb

→ nuclear-polarization corrections as variable parameters
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One of the best: 208Pb

rms=5.5012(13)

Experiment

χ2/DF = 187

Assumptions

on NP correction 5.5031(11)

χ2/DF = 29

Combining with
scattering data

5.503(6)[1]

5.4785(41)[2]

5.5013(7)

[1] Bergem et al., PRC 37, 2821 (1988)

[2] Fricke and Bernhardt, At. Data Nucl. Data Tables 60, 177 (1995)
[3] Valuev et al., PRL 128 203001 (2022)
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Nuclear polarization effect

Image source: www.universetoday.com
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Light muonic atoms: |a⟩ → δ(0)
Heavy highly charge ions: |A⟩ → δ(R)
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Transverse part of muon-nucleus interaction

H = HN +αp+ βmµ + V (r, rNi
)

⇓

H = HN +α(p− eA(r, rNi
)) + βmµ + V (r, rNi

)
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Our goal

field-theory approach

full muon-nucleus interaction

precise muonic
description

state-of-art
nuclear input

NP
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Nuclear polarization correction 208Pb

around 150 eV, or 4σ standard deviations gap

Valuev et al., PRL 128 203001 (2022)
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One of the best: 208Pb rms=5.5012(13)?

Experiment

χ2/DF = 187

Assumptions

on NP correction 5.5031(11)

χ2/DF = 29

Combining with
scattering data

5.503(6)[1]

5.4785(41)[2]

5.5013(7)

Total reevaluation of all QED and nuclear effects is needed
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Dirac value and nuclear size

0

mµc
2

EDirac

Ebinding

FNS

• Muons are close to the nucleus,
relativistic → Dirac equation

• mµc
2 ≈ 100 MeV

EDirac ≈ 80 MeV
Ebinding ≈ 20 MeV

• Extended nucleus: sphere,
Fermi, deformed Fermi

• ∆EFNS ≈ 10 MeV
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EDirac ≈ 80 MeV
Ebinding ≈ 20 MeV

• Extended nucleus: sphere,
Fermi, deformed Fermi

ρa,c,β(rµ, ϑµ) =
N

1 + e[r−c(1+βY20(ϑµ))]/a

• ∆EFNS ≈ 10 MeV
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QED effects:
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QED effects: Uehling

VUe(r) = −2αZα

3r

∫ ∞

0
dr ′r ′ρ(r ′)

[
χ2(2|r − r ′|)− χ2(2|r + r ′|)

]
VUe(r) = Vpoint(r)

[
2α

3π
χ1(2r)

]
VUe(r) ≈ VFermi(r)

[
2α

3π
χ1(2r)

]
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QED effects: Nuclear polarization

Improvements:
• field-theory approach, including transverse part
• state-of-art muonic and nuclear input, model dependence
• 0+, 1−, 2+, 3−, 4+, 5− and 1+ excitation modes

• 4252 eV → 5712 eV

Valuev et al., PRL 128 203001 (2022)
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QED effects: Self energy and recoil

• rigorous QED calculations

• ∆ESE =3270(160)[1], 3373[2] eV → 3225(15)[3] eV
• ∆Erec =385[4]∗ eV → 3902[5] eV

[1] Cheng et al., PRA 17, 489 (1978)
[2] Haga et al., PRC 75, 044315 (2007)
[3] Oreshkina, PRR 4, L042040 (2022)
[4] Bergem et al., PRC 37, 2821 (1988)
[5] Yerokhin and Oreshkina, PRA 108, 052824 (2023)
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QED effects: sub-leading

+ FNS
µ− µ−

µ− µ+

+ hadronic

in preparation
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Results for 208Pb RMS extraction PRELIMINARY
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Model dependence PRELIMINARY

The difference between the Fermi-equivalent radius and the
tabulated value. The solid colourful line is the mean value over all
SKYRME distributions.
Fig: Konstantin Beyer
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Theory uncertainties

• Completely ignored in
previous studies

• Important for fitting and
for final errorbars

• Adding uncertainties
(improving the results)
will lead to visibly
worse outcome
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Barrett radii

PRELIMINARY

EFNS
if ≈ C

∫
d3rρc(r)r

ke−αB r ≡ Bif (C , k , αB)

αB is commonly fixed to be the same for all transitions
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V2 parameter

V2 ≡
r erms

Be
if (k , αB)

=
rµrms

Bµ
if (k , αB)

⇒ rµrms = Bµ
if (k, αB)V

e
2

• Correct if only FNS is included

• We have to subtract ALL other effects

• QED ∼ α/π ≈ 0.2%

• If QED effects are not subtracted, V2 is limited to the same
≈ 0.2% accuracy

• Was is done properly in the past?

δV e
2

V e
2

=

√(
∂V e

2

∂r erms

δr erms

V e
2

)2

+

(
∂V e

2

∂Be
if

δBe
if

V e
2

)2

+ 2
∂V e

2

∂r erms

∂V e
2

∂Be
if

cov(r erms, δB
e
if )

(V e
2 )

2

• For the uncertainty estimation cov matrix is needed
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Errors propagation over time

On the
current
level of
accuracy

an
adequate
method

good
approximation

state-of-
the-art
approach

precise
calculations

“A method described in details in [1]” (dozens of citations)
[1] PhD Thesis: P. Mazanek “Gemeinsame Auswertung von
Messung myonische Atomen,...” (Mainz 1992)
“Same scheme as in my diploma work (1989) [2]”
[2] “applying method presented in [3]”
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Cargo Cult Science by RICHARD P. FEYNMAN (1974)

A scatter plot of electron charge measurements as suggested by
Feynman, using papers published from 1913–1951 (from wikipedia)
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More recent: Proton radius puzzle

1fm = 10−15m = 0, 000 000 000 000 001m

fm 0,85 0,90

Scaterring: 0.87-0.92(1%)

Hydrogen spectroscopy 0.88(0.7%)

µ−Hydrogen spectroscopy 0.84(0.05%)

New hydrogen spectroscopy (2017)

New scaterring (2019)
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New vs Old: Win or Lose?

Old New

Nature

PRL

PRA

• Only improvements are welcomed

• Criticism is unpleasant and hard to publish

• Be brave, but it can cost you
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Interdisciplinarity and reproducibility

• Complexity grows
exponentially ⇒ narrow
specializations

• Interdisciplinary methods are
typically old

• Different language!

• Respectful/stubborn: “my father has been using this
method...”

• Constants: changing with time!

• Calibration lines: changing with time!

• Hidden raw data

• Omitted details of methods/experiments
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