Vision & Precision in charge radii determinations

arXiv:2409.08193

Ben Ohayon | Technion IIT | boahyon@technion.ac.il Technical meeting at the IAEA, January 26-30, 2025

Precision -

→ Vision

- Laser spectroscopy going from strength-to-strength (DY, XY, KF, WN, ...)
- 'New' kids on the block: H-like, He-like, Na-like ions

 Revival of muonic atoms (experiment+theory) (NO, MG)

• Increased demand from nuclear physics (e.g. V_{ud}) (MG)

> g-factor (FH) Laser (WN) EUV spec. (AT)

Vision: "AME" for nuclear charge radii, "NCRE"?

- Increased demand from nuclear physics (e.g. V_{ud}) (MG)
- Laser spectroscopy going from strength-to-strength (DY, XY, KF, WN, ...)
- 'New' kids on the block: H-like, He-like, Na-like ions

Revival of muonic atoms (experiment+theory)

EUV spec. (AT) Laser (WN) g-factor (FH)

(NO, MG)

In this talk:

• Overview: Reference-radii

Focus on light muonic atoms

 Reanalysis project(s): from isotope shifts to charge radii

_		
		/
b		
\prec	$ \begin{tabular}{ c c } \hline \hline$	
\prec	\sim	\square
\prec	$ \begin{tabular}{ c c } \hline \hline$	$ \begin{tabular}{ c c } \hline \hline$
\neg	$ \begin{tabular}{c} \end{tabular} \end{tabular}$	\square
\prec	$\left \right\rangle$	\sim
\neg	$\left \right\rangle$	\sim
\neg	$\left \right\rangle$	\sim
\neg	$ \longrightarrow $	$ \longrightarrow $
\neg	\vdash	$ \longrightarrow $
\neg	\vdash	
\neg	\vdash	\vdash
	\vdash	\vdash
	\vdash	
\neg	\vdash	
	\vdash	
	l	
NT		
L N		
		_

Extraction of MS radius difference from measurements

$$\delta v_{A,A'} \approx \left(\frac{1}{M_{A'}} - \frac{1}{M_A}\right) \mathbf{K} + \mathbf{F} \delta r_{A,A'}^2$$

		<u> </u>
b	74	
2		74
58	69	70
57	68	69
6	67	68
5	66	67
54	65	66
51	62	63
N		

Extraction of MS radius difference from measurements

$$\delta v_{A,A'} \approx \left(\frac{1}{M_{A'}} - \frac{1}{M_A}\right) \mathbf{K} + \mathbf{F} \delta r_{A,A'}^2$$

Reference radii connect MS differences with absolutes

$$r_{A\prime}^2 = r_A^2 + \delta r_{A,A\prime}^2$$

b	74	
2		74
58	69	70
57	68	69
66	67	68
5	66	67
54	65	66
51	62	63
N		

Extraction of MS radius difference from measurements

$$\delta v_{A,A'} \approx \left(\frac{1}{M_{A'}} - \frac{1}{M_A}\right) \mathbf{K} + \mathbf{F} \delta r_{A,A'}^2$$

Atomic factors, either calculated or extracted from reference radii (King Plot).

Reference radii connect MS differences with absolutes

$$r_{A'}^2 = r_A^2 + \delta r_{A,A'}^2$$

		<u> </u>
b	74	
2		74
58	69	70
57	68	69
66	67	68
5	66	67
54	65	66
51	62	63
N		

Reference radii and where to find them

		/
b		
\neg	\square	
\prec	$ \begin{tabular}{ c c } \hline \hline$	$ \begin{tabular}{ c c } \hline \hline$
\neg	\vdash	$ \longrightarrow $
\neg	$ \longrightarrow $	$ \longrightarrow $
\neg	\vdash	68
5	\vdash	
	\vdash	$ \longrightarrow$
-	$\left - \right $	
	\vdash	
	\vdash	
\neg	$\left - \right $	
\neg		
_		
_		
N		

Muonic Atoms 101:

Ordinary atoms

Characteristic length (Bohr radius: $a_0 = \frac{\hbar}{m_e c \alpha} \sim 0.5 \text{\AA}$):

Muonic atoms

 $\frac{n^2 a_0}{Z} \frac{m_e}{m_{\mu}}$

Shorter distances

Muonic Atoms 101:

Ordinary atoms

Characteristic **length** (Bohr radius: $a_0 = \frac{\hbar}{m_e c \alpha} \sim 0.5 \text{\AA}$):

Muonic atoms

 $\frac{n^2 a_0}{Z} \frac{m_e}{m_{\mu}}$

Shorter distances

Higher energies

 $MW \rightarrow Laser$ *Laser* \rightarrow *x* - *ray*

Muonic Atoms 101:

Ordinary atoms

Characteristic **length** (Bohr radius: $a_0 = \frac{\hbar}{m_e c \alpha} \sim 0.5 \text{\AA}$):

(Rydberg: $R_{\infty} = \frac{\alpha}{2a_0} \sim 13.6 \ eV$): $E_n = -\frac{Z\alpha}{2a_m} = -\frac{R_{\infty}Z^2}{n^2}$ $\times 200$

Finite Nuclear Size effect: $\Delta E_{FNS} \sim \frac{4}{3} \frac{R_{\infty} Z^4}{n^3} \left(\frac{r_c}{a_0}\right)^2 \delta_{l0}$

For Hydrogen 1s-2p: $\sim 4 \text{ neV} (1 \text{ MHz}, \text{ppb})$

Muonic atoms

 $\frac{n^2 a_0}{Z} \frac{m_e}{m_\mu}$

Shorter distances

 $MW \rightarrow Laser$ *Laser* \rightarrow *x* - *ray*

Higher energies

 $\xrightarrow{\times (200)^3} \qquad \qquad \frac{4}{3} \frac{R_{\infty} Z^4}{n^3} \left(\frac{r_c}{a_0}\right)^2 \left(\frac{m_{\mu}}{m_e}\right)^3 \delta_{l0}$

~ 30 meV, 10 ppm

Measuring nuclear radii with muonic atoms:

- 1. Captured around N=14
- 2. All electrons are emitted
- 3. Cascade to ground level
- 4. Muon decay ~ $2\mu s$
- 5. $E_{2P-1S} = E_{QED} + \Delta E_{FNS} + \cdots$

Ecosystem of charge radii determinations Radius of $r_x^2 = r_{ref}^2 + \delta r_{a,x}^2$

us (mostly) Review	Differential radii (mostly) from radioactive electronic atoms
oscopy	
Recent Updates	
turbative QED	
Self-energy	

"Old school" combined analysis of muonic atoms and electron scattering:

- What is the limitation of the "Barret recipe?" Three sources of uncertainty:
- 1. Experiment (muonic atom energies)
- 2. Theory (nuclear polarization)
- 3. Charge distribution (scattering)

Sources of Uncertainty to Ref. Radii:

 σ_r

r

Sources of Uncertainty to Ref. Radii:

 σ_r

r

 Notice: Fricke & Heilig only
include statistical unc>
consult original papers

Sources of Uncertainty to Ref. Radii:

How about electron scattering?

• Experimental uncertainty (normalization) goes away for ratios

How about electron scattering?

Experimental uncertainty (normalization) goes away for ratios ullet

APH N.S., Heavy Ion Physics 15/1-2 (2002) 87-102

Barrett Moments and rms Charge Radii

I. Angeli^a

Institute of Experimental Physics, University of Debrecen H-4010 Debrecen, P.O. Box 81, Hungary

Received 21 August 2001

Fig. 1. Z dependence of the ratio v, Eq. (3). Triangles: v values derived from $R_{k,\alpha}$ and $\langle r^2 \rangle^{1/2}$ data; circles: calculated by the empirical formula (5).

Uncertainty in ratios of moments?

- Experimental uncertainty (normalization) goes away for ratios
- Residual model-dependency from finite momentum transfer
- How much does the second-best scattering measurement deviates from the best one?

Uncertainty in ratios of moments?

- Experimental uncertainty (normalization) goes away for ratios
- Residual model-dependency from finite momentum transfer
- How much does the second-best scattering measurement deviates from the best one? 1.6

		1.4
Oughtify our intuition.	10^{3}	1.2
Quantity our intuition.	$q_i) \times$	1.0
Best experiment has broad) – v(0.8
momentum transfer compared to nuclear size.	v(q _{max}	0.6
		0.4

0.0

0.2

Barrett Moments and rms Charge Radii

I. Angeli^a

Institute of Experimental Physics, University of Debrecen H-4010 Debrecen, P.O. Box 81, Hungary

Fig. 1. Z dependence of the ratio v, Eq. (3). Triangles: v values derived from $R_{k,\alpha}$ and $\langle r^2 \rangle^{1/2}$ data; circles: calculated by the empirical formula (5).

Received 21 August 2001

Sources of uncertainty:

Radii of light nuclei from muonic atom x-ray spec.

Ζ

Sources of uncertainty:

Radii of light nuclei from muonic atom x-ray spec.

		0.3
 Within Barret-recipe: 		0.2
scattering model dependency matters !	σ_r	0.2
	r	0.1
		0.1
		0.0
		0.0

Ζ

Transparent tabulation (inviting your input!)

Table 2

 ν factors of Tab. 1

el.	z	А	$r_{\rm ch}$	σ_{exp}	$\sigma_{ m NP}$	$\sigma_{ m CD}$	$\sigma_{ m tot}$	Note
Li	3	6	2.589	0.039			0.039	Α
Be	4	9	2.519	0.012		0.030	0.032	В
в	5	11	2.411	0.021			0.021	\mathbf{C}
\mathbf{C}	6	12	2.483	0.002	0.001	0.000	0.002	D
Ν	7	14	2.556	0.009	0.002	0.001	0.009	
	7	15	2.612	0.009			0.009	E
0	8	16	2.701	0.004	0.001	0.001	0.004	F
F	9	19	2.902	0.003	0.002	0.003	0.005	t
Ne	10	20	3.001	0.004	0.003	0.003	0.006	t
Na	11	23	2.992	0.002	0.002	0.005	0.006	t
Mg	12	24	3.056	0.001	0.002	0.002	0.003	t
	12	26	3.030	0.001	0.002	0.002	0.003	t
Al	13	27	3.061	0.001	0.002	0.003	0.003	†G
Si	14	28	3.123	0.001	0.002	0.002	0.003	t
Р	15	31	3.190	0.001	0.002	0.002	0.003	
S	16	32	3.262	0.001	0.002	0.003	0.003	
	16	34	3.284	0.001	0.002	0.003	0.004	
	16	36	3.298	0.001	0.001	0.003	0.004	
Cl	17	35	3.388	0.015			0.015	Η
Cl	17	37	3.384	0.015			0.015	Η
Ar	18	38	3.402	0.002	0.003	0.005	0.006	
	18	40	3.427	0.001	0.002	0.003	0.004	
К	19	39	3.435	0.001	0.001	0.003	0.004	
\mathbf{Ca}	20	40	3.481	0.001	0.001	0.004	0.004	
	20	48	3.475	0.001	0.001	0.002	0.002	
Sc	21	45	3.548	0.001	0.002	0.006	0.007	

arXiv:2409.08193

Reference radii used in this work. Unless stated otherwise in the note, they are determined via Eq. 1 and 2 with the $2P_{3/2} - 1S$ Barret radii given in [4] and the v factors from tab. 1. Uncertainties are denoted by σ and correspond to statistics and energy calibration (exp), nuclear polarization (NP), and charge distribution (CD) as resulting from the

Transparent tabulation (inviting your input!)

Table 2

 ν factors of Tab. 1

el.	Z	А	$r_{ m ch}$	$\sigma_{ m exp}$	$\sigma_{ m NP}$	$\sigma_{ m CD}$	$\sigma_{ m tot}$	Note
Li	3	6	2.589	0.039			0.039	Α
Be	4	9	2.519	0.012		0.030	0.032	В
в	5	11	2.411	0.021			0.021	С
\mathbf{C}	6	12	2.483	0.002	0.001	0.000	0.002	D
Ν	7	14	2.556	0.009	0.002	0.001	0.009	
	7	15	2.612	0.009			0.009	E
0	8	16	2.701	0.004	0.001	0.001	0.004	F
F	9	19	2.902	0.003	0.002	0.003	0.005	t
Ne	10	20	3.001	0.004	0.003	0.003	0.006	AM: 3.006(2) fm
Na	11	23	2.992	0.002	0.002	0.005	0.006	t
Mg	12	24	3.056	0.001	0.002	0.002	0.003	t
	12	26	3.030	0.001	0.002	0.002	0.003	t
Al	13	27	3.061	0.001	0.002	0.003	0.003	†G
Si	14	28	3.123	0.001	0.002	0.002	0.003	t
Р	15	31	3.190	0.001	0.002	0.002	0.003	
S	16	32	3.262	0.001	0.002	0.003	0.003	
	16	34	3.284	0.001	0.002	0.003	0.004	
	16	36	3.298	0.001	0.001	0.003	0.004	
Cl	17	35	3.388	0.015			0.015	Н
Cl	17	37	3.384	0.015			0.015	Н
\mathbf{Ar}	18	38	3.402	0.002	0.003	0.005	0.006	
	18	40	3.427	0.001	0.002	0.003	0.004	
К	19	39	3.435	0.001	0.001	0.003	0.004	
Ca	20	40	3.481	0.001	0.001	0.004	0.004	
	20	48	3.475	0.001	0.001	0.002	0.002	
Sc	21	45	3.548	0.001	0.002	0.006	0.007	

Example:

arXiv:2409.08193

Reference radii used in this work. Unless stated otherwise in the note, they are determined via Eq. 1 and 2 with the $2P_{3/2} - 1S$ Barret radii given in [4] and the v factors from tab. 1. Uncertainties are denoted by σ and correspond to statistics and energy calibration (exp), nuclear polarization (NP), and charge distribution (CD) as resulting from the

Sources of uncertainty :

Radii of light nuclei from muonic atom x-ray spec.

What is the spike in σ_r exp. uncertainty < Z=11? r

Experiment

Theory (and its inputs)

New experiments needed!

Would clearly benefit from modern analysis!

For *Z* < 3:

•

Laser spectroscopy of muonic atoms, limited by nuclear theory

Ζ

- For Z < 3: Laser spectroscopy of muonic atoms, limited by nuclear theory
- For Z > 6:

Measured x-rays from muonic atoms using solid-state detectors.

 σ_r/r

For *Z* < 3: •

Laser spectroscopy of muonic atoms, limited by nuclear theory

For Z > 6: •

Measured x-rays from muonic atoms using solid-state detectors.

For Z = 3 - 5, and others: ulletElectron scattering

Ζ

For *Z* < 3: •

Laser spectroscopy of muonic atoms, limited by nuclear theory

- **For Z** > 6: • Measured x-rays from muonic atoms using solid-state detectors.
- For Z = 3 5, and others: ulletElectron scattering
- For $\mathbf{Z} = \mathbf{6}$ ulletMeasured with crystal spectrometer. Not widely applicable

 σ_r/r

- For Z < 3: Laser spectroscopy of muonic atoms, limited by nuclear theory
- For Z > 6: Measured x-rays from muonic atoms using solid-state detectors.
- For Z = 3 5, and others: Electron scattering

• For Z = 6

Measured with crystal spectrometer. Not widely applicable

Ζ
The radius gap

- For *Z* < 3: • Laser spectroscopy of muonic atoms, limited by nuclear theory
- **For Z** > 6: ulletMeasured x-rays from muonic atoms using solid-state (
- For Z = 3 5, and others: ulletElectron scattering

• For Z = 6

Measured with crystal spectrometer. Not widely applicable

Experimental opportunities with muonic atoms:

For more information about QUARTET See <u>here</u>, and next talk.

Enter microcalorimeters

Cryogenic microcalorimeters

- High quantum efficiency
- Broadband (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time

$$\frac{\delta E_{FNS}}{E_0} \sim Z^2 \left(\frac{r_c}{a_0}\right)^2 \left(\frac{m_\mu}{m_e}\right)^2 \sim 10^{-4} Z^2$$

Cryogenic microcalorimeters

- High quantum efficiency
- Broadband (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time

Muonic atoms

Cryogenic microcalorimeters

- High quantum efficiency
- Broadband (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time

Enter microcalorimeters

arXiv:2311.12014 arXiv:2310.03846

Cryogenic microcalorimeters Quantum Interactions with Exotic Atoms

More info:

igh quantum efficiency

- **Broadband** (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time (important for background suppression)

What are light radii good for?

- mirrors
- **Isotope shifts:** compare electronic and muonic atoms to search for new lepton-neutron interactions \bullet
- check and strong test for new physics beyond isotope shifts.
- measurements, especially in light nuclei with large isospin asymmetry: I = (N Z)/A.

• Absolute radius: Li/Be/B \rightarrow calibrate entire chains, test nuclear chiral EFT, inc. ⁷Li-⁷Be and (future) ⁸Li-⁸B

• Upcoming optical determinations of absolute radii for helium-like Li to C (Wuhan, Mainz). Important cross

• Mirror nuclei: $\Delta r = r(N,Z) - r(Z,N)$, probe of neutron skins and the nuclear equation of state. Scarce

• Novel measurements of g-factors in H-like ions limited by muonic isotope shifts for new physics searches.

Output II: Z dependence of (unknown) highorder QED in Helium-like atoms

 $E_{HO} \equiv E_{exp} - (E_2 + E_4 + E_5 + E_6 + \delta E_{FNS})$

Radius from Muonic atoms:

High precision **Experiments** in HLIs:

What can better radii of light nuclei do for the mirror fit?

What can better radii of light nuclei do for the mirror fit?

What can better radii of light nuclei do for the mirror fit?

Golden case: A=8

Uncertinaty contributions to $\Delta_{ch}^{mirr}(A = 8) *$

* Private com. Wilfried Nörtershäuser

Golden case: A=8

Uncertinaty contributions to $\Delta_{ch}^{mirr}(A = 8) *$

* Private com. Wilfried Nörtershäuser

QUARTET goals

• Phase I: order of magnitude improvement in radii of Li, Be, B

QUARTET goals

- Phase I: order of magnitude improvement in radii of Li, Be, B
- Phase II: Heavier systems

Ζ

Are there opportunities with heavier systems?

Mostly with microgram targets (HL>years)

Mux (led by Andreas Knecht)

Ref-Radii (led by Thomas Cocolios)

Potassium muonic isotope shift

Counts / 0.1keV (Scaled)

2p-1s comparison

Chlorine measurement (preliminary)

- Muonic 2p-1s energy: ^{nat}Cl: 578.56(30) keV
- Expected improvement on 2p-1s transition energy: $300 \text{ eV} \rightarrow < 30 \text{ eV}$
- Expected improvement on radii: 0.45% → ~0.10-0.15 % (including) systematics)

Literature $\delta < r^2 > 35,37 = 0.03(16)$

Currently worst radius in the region by more than a factor 3

Ecosystem of charge radii determinations Radius of $r_x^2 = r_{ref}^2 + \delta r_{a,x}^2$

us (mostly) Review	Differential radii (mostly) from radioactive electronic atoms
oscopy	
Recent Updates	
turbative QED	
Self-energy	

Ecosystem of charge radii determinations $r_x^2 = r_{ref}^2 + \delta r_{a,x}^2$ Radius of unstable nucleus

Where do charge radii come from?

Extraction of MS radius difference from measurements

$$\delta v_{A,A'} \approx \left(\frac{1}{M_{A'}} - \frac{1}{M_A}\right) \mathbf{K} + \mathbf{F} \delta r_{A,A'}^2$$

Atomic factors, either calculated or extracted from reference radii (King Plot).

Reference radii connect MS differences with absolutes

$$r_{A\prime}^2 = r_A^2 + \delta r_{A,A\prime}^2$$

b	74	
2		74
58	69	70
57	68	69
66	67	68
5	66	67
54	65	66
51	62	63
N		

Differential radii analysis project

Also: Ne (<u>PRA 042503</u>), Na+Mg (<u>PRC L031305</u>), K (<u>2412.05932</u>), Al (in prep.)

Take home:

- Simultaneous analysis of muonic and electronic atoms (same nuclear model, etc.)
- room).
- Emphasize differential radii of electronic measurements: g-factor, helium-like, ...
- Importance of alpha_d measurements, especially in the pigmy region
- Cost of the "Only improvements are welcome" approach

Statement that current radii uncertainties are not reliable (give us breathing)

Point of discussion on NPOL: (infinitely heavy nucleus, no QED loops – See NO's talk)

One photon exchange

Two photon exchange

Inelastic:

Three photon exchange

NPOL1

Perturbative (ab initio) approach: (infinitely heavy nucleus, no QED loops)

One photon exchange

Two photon exchange

Elastic:

Extract

Inelastic:

Nuclear shape (muonic atoms) Three photon exchange

NPOL2

Calculate ab initio

Perturbative (ab initio) approach: (infinitely heavy nucleus, no QED loops)

One photon exchange

Elastic:

Two photon exchange

Three photon exchange

Nuclear shape (muonic atoms)

Partial cancelation Partial cancelation?

Calculate ab initio

Perturbative (ab initio) approach: (infinitely heavy nucleus, no QED loops)

Theory: Lamb shift in muonic D

nelast Nuclear structure two (and three!)-photon contributions to the Lamb shift in muonic deuterium.

Calculate ab initio

Cancellation only in perturbative approach (S. Bacca)?

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zen}^n$$

$$\begin{split} \delta_{\text{pol}}^{A} &= \delta_{D1}^{(0)} + \delta_{R3}^{(1)} + \delta_{R3}^{(1)} + \delta_{R3}^{(0)} + \delta_{L}^{(0)} + \delta_{T}^{(0)} + \delta_{T$$

$$\delta_{\text{Zem}}^A = -\delta_{Z3}^{(1)} - \delta_{Z1}^{(1)}$$

Theoretical derivation of TPE MG? $_{\rm m} + \delta^A_{\rm pol} + \delta^n_{\rm pol}$

 $\delta_{Z3}^{(1)} + \delta_{R^2}^{(2)} + \delta_Q^{(2)} + \delta_{D1D3}^{(2)} + \delta_C^{(0)} + \delta_M^{(0)} + \delta_{R1}^{(1)} + \delta_{Z1}^{(1)} + \delta_{NS}^{(2)}$

Friar an Payne ('97)

All-order (data-driven) approach: (infinitely heavy nucleus, no QED loops)

One photon exchange

Two photon exchange

Elastic:

Extract

Inelastic:

Three photon exchange

$$< r^2 >^2$$

 $< r^4 >$
Log terms
Electronic atoms

Dirac-Coulomb with Input from electron scattering

NPOL2

NPOL1

All-order (data-driven) approach: (infinitely heavy nucleus, no QED loops)

One photon exchange

Elastic:

Extract

Inelastic:

NPOL1

Thanks for listening!