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Prof.	Fricke	was	at	the	KPH	Ins5tute’s	Christmas	Party	in	December	2023
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Outline

Tests of Cabibbo unitarity with nuclear  decays 

Nuclear inputs: theory & Experiment 

Nuclear polarization in muonic atoms 

Status? Update? Outlook?

β



Precision tests of the Standard Model 
with -decaysβ



Top-row CKM unitarity deficit 
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|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud
(4)Vus
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Inconsistencies	between	measurements	of	 	and	 	and	SM	predic5ons	
Most	precise	 	from	superallowed	nuclear	decays
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Status	of	Vud

6

0+-0+	nuclear	decays:	long-standing	champion

|Vud |2 =
2984.43s

ℱt(1+ΔV
R) |V0+−0+

ud | = 0.97370 (1)exp, nucl (3)NS (1)RC[3]total

Nuclear uncertainty x 3

|Vud |2 =
5024.7 s

τn(1 + 3gA2)(1+ΔR)

Neutron	decay:	discrepancies	in	life5me	 	and	axial	charge	 ;	compe55ve!τn gA

|V free n
ud | = 0.9733 (2)τn

(3)gA
(1)RC[4]total

Single	best	measurements	only

PDG	average
|V free n

ud | = 0.9733 (3)τn
(8)gA

(1)RC[9]total

RC not a limiting factor: more precise experiments  a-coming

Neutron	decay	gradually	catches	up;	new	experiments	a-coming		
(expect	to	match	superallowed	nuclear	decays	in	the	next	decade)	

Superallowed	decays:	improvements	needed	on	the	theory	side



 from superallowed nuclear decaysVud



Precise  from superallowed decaysVud

8

Superallowed	0+-0+	nuclear	decays:		
- only	conserved	vector	current		
- many	decays	
- all	rates	equal	modulo	phase	space

Experiment:	f	-	phase	space	(Q	value)	and	t	-	par5al	half-life	(t1/2,	branching	ra5o)
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X	values:	same	within	~2%	but	not	exactly!	
Reason:	SU(2)	slightly	broken	
a. RC	(e.m.	interac5on	does	not	conserve	isospin)	
b. Nuclear	WF	are	not	SU(2)	symmetric		
						(proton	and	neutron	distribu5on	not	the	same)

33

Superallowed 0+ → 0+ nuclear beta decay

The simplest 
nuclear beta
decay!

“Outer correction”
Nuclear structure

effects in inner RC
Isospin-breaking

correction

experimental
ft-value free-nucleon 

inner RC

(discussed before)

(well under control)



Vud extraction: Universal RC and Universal Ft

9

To obtain Vud —> absorb all decay-specific corrections into universal Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)

QED Isospin-breaking Nuclear structure Universal RC~ Measured
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Average	of	14	decays Hardy,	Towner	1972	-	2020

|Vud |2 =
2984.43s

ℱt(1 + ΔV
R)

|V0+−0+

ud | = 0.9737 (1)exp, nucl (3)NS (1)RC[3]total

Pre-2018:	ℱt = 3072.1 ± 0.7 s

PDG	2022:	ℱt = 3072 ± 2 s



How do Nuclear Radii Enter Vud?



Shape factor: nuclear weak CC transition FF FCW(q2)

Fermi Fn: daughter nuclear charge form factor FCh(q2)

QED

Nuclear Structure Inputs in ft

Charge form factors: combination of e-scattering, X-ray/laser/optical atom spectroscopy 
Slope of the charge FF at origin: nuclear charge radius 
Not all radii are known —> have to be guessed (theory)

Charged-current weak transition form factors: only accessible with the decay itself (tough); 
Historically estimated in nuclear shell model with 1B current (Wilkinson; Hardy & Towner; …) 
Typical result: very similar to charge FF

11

f = m−5
e ∫

E0

me

dEe | ⃗pe |Ee(E0 − Ee)2F(Ee)C(Ee)Q(Ee)R(Ee)r(Ee)

New development:  
use isospin symmetry and known charge radii to predict the weak transition radius!



Isospin symmetry + Charge Radii in  isotriplet0+

0+, T = 1, Tz = − 1
0+, T = 1, Tz = 0

0+, T = 1, Tz = 1

12

CY Seng, 2212.02681
RCh,−1 RCh,0

RCh,1

RCW
RCW

Large factors ~Z multiply small differences

3

with Zφ the atomic number of φ. For simplicity, we
will label Z,RCh of an isotriplet nuclear state |1, Tz⟩ as
ZTz

, RCh,Tz
respectively. The r.h.s of the second line

in Eq.(14) consists of two isoscalar terms and an isovec-
tor term; the last is just the nuclear matrix element of

M (1)
0 . By constructing the difference between ZφR2

Ch,φ of
two nuclei within the same isotriplet, the isosinglet pieces
drop out and the remaining isovector term can then be
related to Eq.(13) in the isospin-symmetric limit through
the Wigner-Eckart theorem:

⟨1, Tzb|M (1)
m |1, Tza⟩ = C1,1;1,Tzb

1,Tza;1,m
⟨1||M (1)||1⟩ , (15)

with C1,1;1,Tzb

1,Tza;1,m
the Clebsch-Gordan coefficient and

⟨1||M (1)||1⟩ the reduced matrix element. With this we
finally obtain:

R2
CW = R2

Ch,1 + Z0(R
2
Ch,0 −R2

Ch,1)

= R2
Ch,1 +

Z−1

2
(R2

Ch,−1 −R2
Ch,1) , (16)

where we have used Z1 = Z0 − 1 = Z−1 − 2.
Eq.(16) is the central result of this work: it says that

R2
CW can be determined model-independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the r.h.s of Eq.(16); the first
term is the MS charge radius of the most stable Tz =
+1 nucleus, while the second term involves a difference
R2

Ch,a − R2
Ch,b. Nevertheless, this term is numerically

comparable to the first term because it is multiplied to
a large factor Z; in fact, it is also the main source of
error because the experimental uncertainties in R2

Ch are
enhanced by the same factor. Therefore, we expect the
error of R2

CW determined with this method to be roughly
an order of magnitude larger than that of the individual
R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently-available data of

charge radii for nuclear isotriplets involved in measured
superallowed transitions [31–35]. One observes that in
many cases it is substantially larger than R2

Ch, which sig-
nifies the importance of the “difference” term in Eq.(16).
Also, unlike the charge radius, RCW does not seem to
increase monotonically with the mass number A, which
makes an accurate theory modeling of its value much
more difficult.

Recoil effects: Experiment vs model – Despite
being known since the 1970s, we are not aware of any lit-
erature that seriously implemented the aforementioned
idea in their numerical analysis of f ; instead, most of
them resort to nuclear models. For instance, Hardy and
Towner [36] computed the nuclear form factors directly
using the impulse approximation, where nucleons in a
nucleus are treated as non-interacting, and the nuclear
matrix element of a one-body operator Ô is expressed as

a product of the single-nucleon matrix element of Ô (with
the q2-dependence neglected) and the one-body density
matrix element, the latter is computed with shell model.
To what extent such an approximation captures the cor-
rect q2-dependence of the nuclear form factors is far from
transparent. A more traceable method was introduced
by Wilkinson [26], who estimated the difference between
R2

CW and R2
Ch using shell model and a modified-Gaussian

charge distribution:

R2
CW −R2

Ch ≈
4

3(5A′ + 2)

4n+ 2l− 1

5
R2

Ch , (17)

where {n, l} are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and
A′ is a parameter of the modified-Gaussian charge dis-
tribution fixed by the condition 2/(2 + 3A′) = Zl=0/Z
for the parent nucleus. As we will see later that the ef-
fects of S to the total decay rate can reach 0.1% or above
for medium and heavy nuclei, theory errors in the RCW-
modeling could lead to corrections at (0.01-0.1)% level
which are relevant for the precise extraction of Vud.

Based on the data in Table I, we can immediately
study the effect of S to the total decay rate model-
independently for 13 out of 23 [2] measured superallowed
transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is
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transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is

How is RCW related to RCh,Tz? 
Charged-Current weak current: pure isovector 
Electromagnetic current isovector + isoscalar 

Remove isoscalar part: 
Relate weak <—> charge radii 

Photon probes the entire nuclear charge 
Only the outer protons can decay: all neutron states in the core occupied

g

e+

n

r
ch
(r)

r
cw
(r)



Isospin symmetry + Charge Radii in isotripletT = 1, O+

13

Seng, 2212.02681

More -and more precise- charge radii necessary! 
Working closely with exp. (PSI, FRIB, ISOLDE, TRIUMF)

Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)dist(2)scr(17)QEC
134.64(17)QEC

�0.01(0)dist(2)scr
22Mg!22Na 418.27(2)dist(7)scr(13)QEC

418.35(13)QEC
�0.02(0)dist(2)scr

34Ar!34Cl 3409.89(24)dist(60)scr(25)QEC
3410.85(25)QEC

�0.03(1)dist(2)scr
38Ca!38mK 5327.49(39)dist(98)scr(31)QEC

5328.88(31)QEC
�0.03(1)dist(2)scr

42Ti!42Sc 7124.3(58)dist(14)scr(14)QEC
7130.1(14)QEC

�0.08(8)dist(2)scr
50Fe!50Mn 15053(18)dist(3)scr(60)QEC

15060(60)QEC
�0.04(12)dist(2)scr

54Ni!54Co 21137(4)dist(5)scr(52)QEC
21137(57)QEC

+0.00(2)rad(2)scr
34Cl!34S 1995.08(13)dist(36)scr(9)QEC

1996.003(96)QEC
�0.05(1)dist(2)scr

38mK!38Ar 3296.32(22)dist(63)scr(15)QEC
3297.39(15)QEC

�0.03(1)dist(2)scr
42Sc!42Ca 4468.53(340)dist(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)dist(2)scr

50Mn!50Cr 10737.9(117)dist(23)scr(5)QEC
10745.99(49)QEC

�0.08(11)dist(2)scr
54Co!54Fe 15769.4(24)dist(34)scr(27)QEC

15766.8(27)QEC
+0.02(2)dist(2)scr

74Rb!74Kr 47326(128)dist(12)scr(94)QEC
47281(93)QEC

+0.10(27)dist(3)scr
Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to
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Weak radii differ significantly from Rch 
Shape factor—> Fermi Fn —> ft

New ft vs estimates by Hardy and Towner  

Relative shift downwards of 0.01-0.1% 
Non-negligible given the precision goal 0.01%
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Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi)

1 1.000 14 1.481 25 1.513 39 1.553 60 1.572 80 1.599
7 1.399 15 1.484 27 1.518 45 1.561 64 1.577 86 1.600
8 1.420 16 1.488 30 1.540 49 1.566 66 1.579 92 1.601
9 1.444 17 1.494 32 1.556 52 1.567 68 1.586 94 1.603
10 1.471 18 1.496 35 1.550 53 1.568 70 1.590
11 1.476 20 1.495 36 1.551 54 1.568 74 1.593
12 1.474 23 1.504 38 1.552 55 1.567 76 1.595

Table II: Hartree-Fock calculation of N(Zi) from Ref.[94].

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)rad(0)shape(2)scr(17)QEC
134.64(17)QEC

�0.01(0)rad(0)shape(2)scr
22Mg!22Na 418.27(1)rad(1)shape(7)scr(13)QEC

418.35(13)QEC
�0.02(0)rad(0)shape(2)scr

26Si!26mAl 1027.52(15)rad(12)shape(17)scr(12)QEC
1028.03(12)QEC

�0.05(1)rad(1)shape(2)scr
34Ar!34Cl 3409.89(16)rad(18)shape(60)scr(25)QEC

3410.85(25)QEC
�0.03(0)rad(1)shape(2)scr

38Ca!38mK 5327.49(14)rad(36)shape(98)scr(31)QEC
5328.88(31)QEC

�0.03(0)rad(1)shape(2)scr
42Ti!42Sc 7124.3(57)rad(8)shape(14)scr(14)QEC

7130.1(14)QEC
�0.08(8)rad(1)shape(2)scr

50Fe!50Mn 15053(18)rad(3)shape(3)scr(60)QEC
15060(60)QEC

�0.04(12)rad(2)shape(2)scr
54Ni!54Co 21137(3)rad(1)shape(5)scr(52)QEC

21137(57)QEC
+0.00(2)rad(0)shape(2)scr

26mAl!26Mg 478.097(60)rad(54)shape(82)scr(100)QEC
478.270(98)QEC

�0.04(1)rad(1)shape(2)scr
34Cl!34S 1995.076(81)rad(103)shape(364)scr(94)QEC

1996.003(96)QEC
�0.05(0)rad(1)shape(2)scr

38mK!38Ar 3296.32(8)rad(21)shape(63)scr(15)QEC
3297.39(15)QEC

�0.03(0)rad(1)shape(2)scr
42Sc!42Ca 4468.53(336)rad(52)shape(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)rad(1)shape(2)scr

50Mn!50Cr 10737.93(1150)rad(202)shape(229)scr(50)QEC
10745.99(49)QEC

�0.08(11)rad(2)shape(2)scr
54Co!54Fe 15769.4(23)rad(7)shape(34)scr(27)QEC

15766.8(27)QEC
+0.02(1)rad(0)shape(2)scr

74Rb!74Kr 47326(127)rad(18)shape(12)scr(94)QEC
47281(93)QEC

+0.10(27)rad(4)shape(3)scr

Table III: Comparison between new and old results of f . Notation: 123.12(234) means 123.12± 2.34.

Transition t (ms) (ft)HT (s) (ft)new(s)
18Ne!18F 21630± 590 2912± 79 2912± 80

22Mg!22Na 7293± 16 3051.1± 6.9 3050.4± 6.8
26Si!26mAl 2969.0± 5.4 3052.2± 5.6 3050.7± 5.6
34Ar!34Cl 896.55± 0.81 3058.0± 2.8 3057.1± 2.8
38Ca!38mK 574.8± 1.1 3062.8± 6.0 3062.2± 5.9
42Ti!42Sc 433± 12 3090± 88 3085± 86
50Fe!50Mn 205.8± 4.7 3099± 71 3098± 72
54Ni!54Co 144.9± 2.3 3062± 50 3063± 49

26mAl!26Mg 6351.24+0.55
�0.54 3037.61± 0.67 3036.5± 1.0

34Cl!34S 1527.77+0.47
�0.44 3049.43+0.95

�0.88 3048.0± 1.1
38mK!38Ar 925.42± 0.28 3051.45± 0.92 3050.5± 1.1
42Sc!42Ca 681.44± 0.26 3047.7± 1.2 3045.0± 2.7
50Mn!50Cr 283.68± 0.11 3048.4± 1.2 3046.1± 3.6
54Co!54Fe 193.495+0.086

�0.063 3050.8+1.4
�1.1 3051.3+1.7

�1.4
74Rb!74Kr 65.201± 0.047 3082.8± 6.5 3086± 11

Table IV: Summary of the experimental results of the par-
tial half-life t and the previous ft determination, both from
Ref.[1], and our updated ft values for 15 superallowed tran-
sitions.

(scr). The errors from the former two are fully corre-
lated and stem from the radial (rad) and higher-order
shape parameters (shape) in the nuclear charge distribu-
tion functions. It is apparent from our analysis that in
many cases the total theory uncertainty (rad + shape +
scr) is larger than the experimental ones (QEC). Based
on this we deem that Ref.[1] has underestimated the er-
rors in f . To be complete, we also compare the old and
new determination of the full ft value in Table IV.

It is interesting to study the shift of the central value
of f from the previous determination. It was shown in
Ref.[57], by inspecting the analytic formula of the “pure-
QCD” shape factor CQCD(E) in the absence of electro-
magnetic interaction, that an increase of hr2cwi1/2, the MS
radius characterizing ⇢cw, in general leads smaller values
of f . Indeed, from the last column in Table III we see
that in most cases our new evaluation reduces the central
value of f at the level of 0.01%, although some of such
shifts are within the quoted (theory) uncertainties. The
magnitude of the shift obtained in this work is in general
smaller than those estimated in Ref.[57] upon accounting
for the correlated effects with the Fermi function. Never-
theless, according to Eq.(3), a coherent downward shift
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Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .
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Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to
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Above treatment assumes isospin symmetry — but we know that it is slightly broken! 
Why isospin symmetry assumption is good enough? 

Shape factor and finite size effects are ~small corrections to Fermi function 
1-2% ISB effect on top of a RC may be assumed negligible (but needs to be tested)

Test requires that all 3 nuclear radii in the isotriplet are known; 
Currently only the case for A=38 system

ISB-sensitive combination

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

= 0 if isospin symmetry exact

1
2 (20 × 3.467(1)2 + 18 × 3.4028(19)2) − 19 × 3.437(4)2 = − 0.00(12)(14)(52)

Improvement of K-38m radius necessary! (Plans at TRIUMF on IS K-38m, K-37?)



Isospin	symmetry	breaking	in	superallowed	 -decayβSUPERALLOWED 0+ → 0+ NUCLEAR . . . PHYSICAL REVIEW C 91, 025501 (2015)

TABLE X. Corrections δ′
R , δNS, and δC that are applied to

experimental f t values to obtain F t values.

Parent δ′
R δNS δC1 δC2 δC

nucleus (%) (%) (%) (%) (%)

Tz = −1
10C 1.679 −0.345(35) 0.010(10) 0.165(15) 0.175(18)
14O 1.543 −0.245(50) 0.055(20) 0.275(15) 0.330(25)
18Ne 1.506 −0.290(35) 0.155(30) 0.405(25) 0.560(39)
22Mg 1.466 −0.225(20) 0.010(10) 0.370(20) 0.380(22)
26Si 1.439 −0.215(20) 0.030(10) 0.405(25) 0.435(27)
30S 1.423 −0.185(15) 0.155(20) 0.700(20) 0.855(28)
34Ar 1.412 −0.180(15) 0.030(10) 0.665(55) 0.695(56)
38Ca 1.414 −0.175(15) 0.020(10) 0.745(70) 0.765(71)
42Ti 1.427 −0.235(20) 0.105(20) 0.835(75) 0.940(78)
Tz = 0
26mAl 1.478 0.005(20) 0.030(10) 0.280(15) 0.310(18)
34Cl 1.443 −0.085(15) 0.100(10) 0.550(45) 0.650(46)
38mK 1.440 −0.100(15) 0.105(20) 0.565(50) 0.670(54)
42Sc 1.453 0.035(20) 0.020(10) 0.645(55) 0.665(56)
46V 1.445 −0.035(10) 0.075(30) 0.545(55) 0.620(63)
50Mn 1.444 −0.040(10) 0.035(20) 0.610(50) 0.645(54)
54Co 1.443 −0.035(10) 0.050(30) 0.720(60) 0.770(67)
62Ga 1.459 −0.045(20) 0.275(55) 1.20(20) 1.48(21)
66As 1.468 −0.060(20) 0.195(45) 1.35(40) 1.55(40)
70Br 1.486 −0.085(25) 0.445(40) 1.25(25) 1.70(25)
74Rb 1.499 −0.075(30) 0.115(60) 1.50(26) 1.62(27)

cautious. Furthermore, because the uncertainty is associated
with the Z2α3 term, it is expected to be a smooth function
of Z2 and thus to behave systematically since any shift in the
value of δ′

R must affect all F t values in the same direction.
We then proceed as follows: We evaluate the individual

transition F t values without including any uncertainties
associated with δ′

R and obtain an average F t . Then we shift all
the individual δ′

R terms up and down by one-third of the Z2α3

contribution, recalculate the F t values and determine F t for
both. The shifts in the value of the latter—±0.36 s for the data
in Table IX—becomes the systematic uncertainty assigned to
F t to account for the uncertainty in δ′

R. Note that our choice to
take one-third of the Z2α3 term is rather arbitrary, but has the
benefit that it is still conservative and at the same time results
in the uncertainty in δ′

R having an impact on the overall result
that is comparable to its impact in our previous survey [6].

We turn now to the third radiative term δNS, which arises
from an evaluation of the low-energy part of the γW -box
graph for an axial-vector weak interaction. If it is assumed
that the γN and WN vertices are both with the same nucleon,
N , then the evaluated box graph becomes proportional to
the Fermi β-decay operator, yielding a universal correction
already included in %V

R.
If instead the γ and W interactions in the γW -box

graph for an axial-vector current are with different nucleons
in the nucleus, then the evaluation involves two-nucleon
operators, which necessitates a nuclear-structure calculation.
This component of the radiative correction we denote by δNS
and list its values in column 3 of Table X. The values and their
uncertainties have been taken from Table VI in Ref. [192].

For this correction term, a number of model calculations were
carried out for each nucleus [192] and the uncertainties listed
were chosen to encompass the spread in the results from these
calculations. Therefore the uncertainty is nucleus-specific and,
as such, can be treated as statistical and not systematic. We
thus combine it in quadrature with the experimental errors in
determining the F t-value uncertainties.

2. Isospin-symmetry-breaking correction

In this section we describe only the set of isospin-
symmetry-breaking corrections, δC , that we have used in
deriving the corrected F t values given in Table IX. A
discussion of other alternative calculations of δC—and our
reasons for rejecting them—is postponed to Sec. IV. The set we
have selected follows from a semiphenomenological approach
based on the shell model combined with Woods-Saxon radial
functions. This model, which we designate as SM-WS, has
been described in detail by us in Ref. [192], where also
the results for δC are tabulated. We describe the model only
briefly here, while making two minor updates to our previous
results.

The calculation is done in two parts, which is made possible
by our dividing δC into two terms:

δC = δC1 + δC2. (4)

The idea is that δC1 follows from a tractable shell-model
calculation that does not include significant nodal mixing,
while δC2 corrects for the nodal mixing that would be present
if the shell-model space were much larger.

For δC1, a modest shell-model space (usually one major
oscillator shell) is employed, in which Coulomb and other
charge-dependent terms are added to the charge-independent
effective Hamiltonian customarily used for the shell model.
These charge-dependent additional terms are separately ad-
justed for each superallowed β transition to reproduce the
b and c coefficients of the isobaric multiplet mass equation
(IMME) for the triplet of T = 1, 0+ states that includes the
parent and daughter states of the transition.

Since the Coulomb force is long range, its influence in
configuration space extends much further than the single
major oscillator shell included in the calculation of δC1. To
incorporate the effects of multishell mixing, we note first that
its principal impact is to change the structure of the radial wave
function by introducing mixing with radial functions that have
more nodes. Since this mixing primarily affects protons, it
results in proton radial functions that differ from the neutron
ones so, when the overlap is computed, its departure from unity
determines the value of δC2. The radial functions themselves
are derived from a Woods-Saxon potential. Again there is
a case-by-case adjustment in the Woods-Saxon potentials
to ensure that the different measured proton and neutron
separation energies in the β-decay parents and daughters are
correctly reproduced.

The SM-WS calculations of Towner and Hardy [192] must
clearly be classified as semiphenomenological. A number of
transition-specific nuclear properties have been fitted in their
determination of δC. In contrast, most of the alternative models
discussed in Sec. IV are first-principles theory calculations.

025501-11

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

HT:	shell	model	with	phenomenological		
Woods-Saxon	poten5al	locally	adjusted	to:	
• Masses	of	the	isotriplet	T=1,	0+	(IMME)	
• Neutron	and	proton	separa5on	energies	
• Known	charge	radii
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MF = ⟨ f |τ+ | i⟩

Tree-level	Fermi	matrix	element

	—	Isospin	operator	
	—	members	of	T=1	isotriplet

τ+

| i⟩, | f ⟩

If	isospin	symmetry	were	exact,	 	

Isospin	symmetry	is	broken	in	nuclear	states		
(e.g.	Coulomb,	nucleon	mass	difference,	…)	

In	presence	of	isospin	symmetry	breaking	(ISB):	

MF → M0 = 2

|MF |2 = |M0 |2 (1 − δC)

ISB	correc5on	is	crucial	for	 	extrac5onVud

δC ∼ 0.17% − 1.6%!



Phenomenological constraints on δC
	dominated	by	Coulomb	repulsion	between	protons	(hence	C)	

Coulomb	interac5on	generates	both	 	and	ISB	combina5ons	of	nuclear	radii

δC

δC
Miller, Schwenk 0805.0603; 0910.2790; Auerbach 0811.4742; 2101.06199; 

Seng, MG 2208.03037; 2304.03800; 2212.02681
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

−1
2

∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
6

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

−
∑

a

⟨a;2||V ||g;1⟩∗⟨a;2||M(1)||g;1⟩
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

+
∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
3

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

⟨a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z⟩ = C

11;T ′T ′
z

1T z;1T ′′
z
⟨a; T ′||M(1)||g;1⟩

⟨a; T ′, T ′
z|V |g;1, T z⟩ = C

11;T ′T ′
z

1T z;10 ⟨a; T ′||V ||g;1⟩, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|⟨a;0||V ||g;1⟩|2
(Ea,0 − E g,1)2 + 1

2

∑

a≠g

|⟨a;1||V ||g;1⟩|2
(Ea,1 − E g,1)2

−5
6

∑

a

|⟨a;2||V ||g;1⟩|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ≪ Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|⟨a; T ||V (1)
C ||g;1⟩|2

Ea,T − E g,1
, (18)

with a ̸= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z⟩, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T ⟩ are of the 
order (N − Z)/A ≪ 1. Hence, in this approximation scheme all ma-
trix elements are equal, ⟨M; T ||V (1)

C ||g; 1⟩ ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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Previously guessed Rc(26mAl) = 3.040(20) fm

Plattner et al, arXiv: 2310.15291
Wilfried’s talk (?), Ben’s talk (?)

was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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Isotope shift in aluminum 27-26m 
3s23p 2P3/2 —> 3s24s 2S1/2 transition

was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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Input from atomic theory: F,M 
Reference radius Al-27 from µ atoms

Recent measurement at IGISOL

the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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Fig. 5: Linear fit to the mirror shift. Data-points are the individual shifts from Tab. 4. The dark shaded region is the 68% confidence

interval of the fitted slope given in Eq. 6. The light shaded region is the 68% confidence interval calculated from first principles [31].

previous sections. Nevertheless, with the reference radii given in Table 2, �r2 from the literature (the references are

given in Table 5), and the re-calibrated neon di↵erential radii given in Table 3, we have all the ingredients to test the

linear theoretical prediction experimentally.

The relevant data is given in Table 4. We excluded the pair 21Na-21Ne, as its uncertainty is too large to be of use.

We also did not include the pairs with Cl isotopes, as their radii were determined from electron scattering experiments

which are of limited reliability. The result of a one parameter analytical fit to the weighted mirror shifts is shown in

Figure 5. It has a reduced Chi-square of 11.5/11 = 1.04 indicating that a such a fit is not inconsistent with the data.

The resulting mirror shift parametrization is

�I = rN,Z(I)� rZ,N (I) = 1.382(34)⇥ I fm. (6)

The structure of this work enables to remove certain ingredients from the analysis to test their e↵ect. We find that

nearly half of the uncertainty given in Eq. 6 stems from that of the charge distributions, previously overlooked in the

literature. Omitting it would result in a reduced �2 of 2.3. The second-largest contributor is the uncertainty in the

di↵erential radii, as extracted from optical isotope shift measurements. It originates mostly from the atomic factors and

not the statistical accuracy of the optical measurements (see e.g. [32]).

The empirically determined slope of Eq. 8, agrees with the band spanning nuclear theory calculations �I = (1.574⇥

I)± 0.021 fm [31], also shown in Figure 5. To extend the comparison between experiment and theory, it would thus be

very interesting to add experimental data at high asymmetry 0.12 < I for which no precise data is currently available.

The pair which weight is the largest in the fit is 36Ca�36S, which combines high experimental accuracy with a large
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high qeff = 1.8 fm�1 range covered. Adopting the charge distributions from either [23] or [24], which only extend to

qeff = 1 fm�1, results in v ⇠ 5 giving r20 = 3.009 fm. The 0.3% di↵erence in the radius obtained using v-factors from

di↵erent scattering experiments is a testament to the importance of accounting for uncertainty in the charge distribution.

The lack of high momentum transfer scattering data in 22Ne prevents us from estimating its radius directly from its

Barrett radius given in [22]. Assuming v22 = v20±0.5, in line with the isotopic variations from Tab. 1, returns a di↵erence

�r220,22 = �0.310(16)exp(5)NP(9)v fm
2, (4)

where we observe that the uncertainty from a possible variation of the charge distribution between the isotopes is not

negligible.

Optical isotope shifts were measured for the 614 nm transition in a long chain of neon isotopes [20, 21]. To calibrate

the radii of the neon chain, a partial king plot procedure is used. It relies on the IS equation

�vA,A0

i ⇡ Kiµ
A,A0

+ Fi(�r
2)A,A0

, (5)

with F614 calculated via many-body atomic theory and one di↵erential radii pair to determine K614. The resulting

K614 and calculated F614 are then used to extract �r2 from optical isotope shifts. Originally, F614 = �40(4)MHz/fm2

was estimated semi-empirically using the Goudsmit-Fermi-Segre method (GFS) [20]. Resulting in the radii of the chain

that were limited by �F . A later ab initio calculation returned F614 = �30.5(1.5)MHz/fm2 [25], where we adopted here

the more conservative uncertainty estimate given in [26]. The disagreement between the semi-empirical and ab initio

methods is attributed to the limited accuracy of the GFS formula, as discussed e.g. in [25, 27–29]. Using this F614, the

radii of the chain could be improved by up to a factor of 1.6 [25], with their uncertainty dominated by that of �r220,22

given in Eq. 4. It is thus clear that a better determination of �r220,22 would increase the accuracy far from stability.

Luckily, a new method has recently emerged to determine di↵erential radii in even-even isotopes. This is accomplished

through measuring the di↵erences in the g-factors of single electron bounds to bare nuclei. For neon, such a measurement

returned r20�r22 = �0.0533(4) fm corresponding to �r220,22 = �0.3171(24) fm2 [30]. A remarkable improvement by factor

8 over the value given in Eq. 4. Applying Eq. 5 with the highly accurate �r220,22 from the g-factor measurement results in

improved di↵erential radii of the entire neon chain. They are given in table 3. These are more precise by up to a factor

2.5 as compared with [25]. The improvement was somewhat curtailed by our more conservative uncertainty estimation

for r20 and F614. The current uncertainty budget both motivates new optical measurements with higher precision, and

a more accurate calculation of F614.

This example shows the tremendous impact of measuring a single �gbound, and motivates extending such measurements

to other stable even-even pairs.

4. The mirror shift fit

Extensive ab initio calculations suggest that the di↵erences in radii between mirror nuclei (mirror shifts) are pro-

portional to the isospin asymmetry I = (N � Z)/A, at least up to I ⇡ 0.2 [31]. The experimental situation is not

as healthy. In contrast with isotope shifts, which can be measured directly via optical spectroscopy, mirror shifts are

di�cult to measure with high fractional precision. To obtain them, one has to take the di↵erence between the absolute

radii of the mirror pair, contending with large experimental and theoretical uncertainties, which are emphasized in the

6

Superallowed	isotriplets	contain	mirrors	
Use	info	about	radii	of	other	mirror	nuclei

Agrees	well	with	ab-ini5o	nuclear	theory	(Novario	et	al,	2111.12775)	but	is	more	precise

18

Ben’s	talk



26mAl 38mK 42Sc 50Mn 74Rb

-8

-6

-4

-2

0

2

4

 M
B(1

)  [f
m

2 ]

Fig. 6: Testing for isospin symmetry breaking by comparing measured (exp) and semi-empirical (SE) radii. See Eq. 10 and Table 7.

Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical
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Table 7

Radii of isotriplet nuclei. r±1 are from Tab. 5, r0,SE, �M (1)
B , and rCW are calculated using Eq. 9, Eq. 10, and 11,

respectively. Asterisks denote short-lived excited nuclear states.“m” denotes long-lived nuclear isomers. r0,exp are
determined by combining reference radii from Tab. 2, optical isotopes shifts given in Refs. [76, 81, 95–97], and improved
calculations of atomic factors from Refs. [41, 68, 77].

r�1 fm r0,SE fm r0,exp fm r+1 fm �M (1)
B fm2 r2CW fm2 Ref. [38]

10
6 C 2.638(36) 10

5 B* 2.531(38) 10
4 Be 2.361(36) 9.72(25) N/A

14
8 O 2.706(11) 14

7 N* 2.623(10) 14
6 C 2.508(09) 10.41(12) N/A

18
10Ne 2.934(09) 18

9 F* 2.863(07) 18
8 O 2.777(07) 12.08(12) 13.4(5)

22
12Mg 3.071(05) 22

11Na* 3.017(05) 22
10Ne 2.948(04) 13.24(12) 12.9(7)

26
14Si 3.137(04) 26m

13 Al 3.088(04) 3.132(08) 26
12Mg 3.030(03) �3.5(0.7) 13.77(12) N/A

30
16S 3.224(07) 30

15P* 3.181(06) 30
14Si 3.132(06) 14.50(13) N/A

34
18Ar 3.365(11) 34

17Cl 3.328(04) 34
16S 3.284(04) 15.66(13) 15.6(5)

38
20Ca 3.469(04) 38m

19 K 3.440(07) 3.437(05) 38
18Ar 3.402(06) 0.6(1.1) 16.58(13) 16.0(3)

42
22Ti 3.576(05) 42

21Sc 3.545(04) 3.558(16) 42
20Ca 3.510(04) �2.0(2.4) 17.46(13) 21.5(3.6)

46
24Cr 3.670(05) 46

23V 3.642(05) 46
22Ti 3.610(04) 18.29(14) N/A

50
26Fe 3.719(04) 50

25Mn 3.693(04) 3.728(41) 50
24Cr 3.664(04) �6.6(7.8) 18.73(14) 23.2(3.8)

54
28Ni 3.741(05) 54

27Co 3.715(04) 54
26Fe 3.688(04) 18.93(14) 18.3(9)

58
30Zn 3.820(03) 58

29Cu* 3.797(03) 58
28Ni 3.773(03) 19.66(14) N/A

62
32Ge 3.927(06) 62

31Ga 3.906(06) 62
30Zn 3.883(06) 20.65(15) N/A

74
38Sr 4.205(12) 74

37Rb 4.187(12) 4.194(17) 74
36Kr 4.168(12) �1.9(6.5) 23.32(19) 19.5(5.5)
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Fig. 6: Testing for isospin symmetry breaking by comparing measured (exp) and semi-empirical (SE) radii. See Eq. 10 and Table 7.

Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical
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Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

Fill	in	missing	entries	using	fit

Combine	into	ISB-sensi5ve	combina5on

At	present	can	test	5	isotriplets	
A=26	shows	significant	ISB	(??)	
Others	consistent	with	0	within	errors

19
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Impact of precise nuclear radii on Ft and Vud

Dedicated	paper	addressing	all	ingredients	is	in	prepara5on		(MG,	B.	Ohayon,	B.	Sahoo,	C-Y	Seng)

Sensi5vity	to	the	charge	radii:	 δC ≈ 0.310(17) % + 0.33 % [r(26mAl)/fm − 3.040]

We	find	even	higher	sensi5vity	of	f	compared	to	 	(preliminary)δC

To	summarize

• Nuclear	radii	are	indispensable	input	for	extrac5ng	Vud	from	nuclear	beta	decays	

• Tests	of	isospin	symmetry	involve	cancella5ons	between	radii	—	precision	marers!



Nuclear Polarization

See	also	Natalia’s	talk



Where do we get the nuclear radii from?

22

Everyone	takes	nuclear	radii	from	tables,	e.g.	Angeli-Marinova	or	Fricke-Heilig	

F&H	explicitly	specify	nuclear	polarizability	as	stemming	from	Rinker,	Speth	1978	

However:	compare	to	other	works	by	same	people	

Disagreement	~	30-40%	—	larger	than	exp.	error

SYSTEMATICS OF NUCLEAR CHARGE DISTRiBUTIONS IN. .

the formula

a =0.03661+(1.4194 & 10 ')Z.
Kith the value of n thus determined, the param-
eters A, 8, and k of Eg. (2) were fitted using a
two-parameter Fermi charge distribution with
(=4aln3 fixed at 2.3 fm. The fit of Ref. 1 was
done with a weighting function of r p(r) which
emphasizes the nuclear surface region where the
charge distribution differences are largest.
Table VII lists for our data the values of n and

k and the equivalent radii R, calculated using Eq.
(3). The errors in R~ are derived by multiplying
the experimental error by C~ =—dR~/dE. The
error in these radii due to uncertainties in the
higher-order corrections has been discussed in
Sec. m.
To verify that the quoted R~ are independent of

the charge model, the analysis was also performed
using Hartree-Fock charge distributions in which
the radial scale factor was adjusted to fit the ex-
perimental energies. The resulting equivalent
radii were the same as those obtained with the
two-parameter charge distribution to within ap-
proximately 0.2 mfm (10 eV).
The isotope and isotone shifts 5R„listed in Table

VIII were calculated by taking the difference of the
appropriate R~ values. The errors of the 5R, were
computed from the experimental errors of the
energy differences (Table IV) by using the sen-
sitivity factors given in column 9 of Table VII. The

problem of comparing slightly different param-
eters of the charge distribution, which arises in
the case of the isotone shifts, was investigated
by using a common a and 0 for all nuclei. Kith
n = 0.076 fm ' and k = 2.123 (the values given by
Engfer' for ' Ni), the isotope differences were
found to be the same within 0.1 mfm. The DR~ for
the isotones increased 0.5 mfm for isotones differ-
ing by one proton and 1 mfm for isotones differing
by two protons. Since these changes are only of
the order of the experimental error, we have
chosen to list the "model-independent" values of
5R~.
It is not unusual for the results of theoretical

calculations of the nuclear charge distribution to
be quoted in terms of an rms charge radius. For
this reason we also list in Table VII values of
(r ')'~', using a. two-parameter Fermi distribu-
tion. It should be kept in mind, however, that such
values are not independent of the charge model
used.

VII. INTERPRETATION AND CONCLUSIONS

The aim of this experiment has been the sys-
tematic study of isotope and isotone shifts in the
region near the Z =28 closed shell. A graphical
summary of the results is shown in Figs. 5 and V.
In these two figures the shifts between even-A
nuclei are shown separately from the odd-even
shifts since the physical interpretation is different
in these two cases.

TABLE VII. Experimental equivalent radii, interpreted from the "combined" 2p3~&- 1s&~2 transition energies. Fits
were made using two-parameter Fermi function charge distributions, with C as given and a fixed at 0.55 fm. Estimat-
ed errors in the equivalent radii R& do not include theoretical uncertainties.

Isotope

Experimental
ener~
(keV)

Nuclear
polarization All other
corrections ~ corrections ~

(keV) (keV)

54Fe
56Fe
"Fe
58Fe
"Co
58Ni
60Ni

62Ni
"Ni
"Cu
"Cu
64Zn
66Zn
68Zn
70Zn

1260.011(45)
1257.054 (42)
1255.921(51)
1254.485 (49)
1341.461(46)
1432.564 (44)
1429.369(43)
1428.393(49)
1426.829(43)
1425.229 (46)
1514.433 (44)
1512.516(45)
1602.718 (44)
1600,544 (43)
1598.763 (44)
1596.898 (109)

0.546
0.582
0.600
0.624
0.588
0.689
0.693
0.632
0.703
0.725
0.739
0.749
0.857
0.909
0.917
0.973

9.768
9.718
9.701
9.678
10.382
11,134
11.083
11.068
11.042
11.015
11.724
11.693
12,401
12.367
12.337
12.306

3.98097
4.04735
4.07296
4.10513
4.12450
4.10687
4.16295
4.17918
4.20767
4.23639
4.26910
4.29959
4.33742
4.36910
4.39462
4.42190

3.700
3.743
3.759
3.780
3.793
3.781
3.818
3.829
3.847
3.866
3.888
3.908
3.933
3.954
3.971
3.989

0.074
0.074
0.074
0.074
0.075
0.076
0.076
0.076
0.076
0.076
0.078
0.078
0.079
0.079
0.079
0.079

2.121
2.121
2.121
2.121
2.121
2.123
2.123
2.123
2.123
2.123
2.12V
2.127
2.130
2.130
2.130
2.130

-18.1
-18.1
-18.1
-18.1
-16.2
-14.5
-14.5
-14.5
-14.5
-14.5
-13.1
-13.1
-11.g
-11.9
-11.9
-11.9

4.7387(8)
4.7941(8)
4.8155(9)
4.8425(9)
4.8581(7)
4.8428 (6)
4.8900 (6)
4.9037(7)
4.9278 (6)
4.9521(7)
4.9789(6}
5.0048 (7)
5.0366(5)
5.0637(5)
5.0855(5)
5.1088(13)

' Itemized in Table I for selected nuclei.
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Systematics of nuclear charge distributions in Fe, Co, Ni, Cu, and Zn deduced
from muonic x-ray measurements*
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University of California, Los A/amos Scientific Laboratory, Los Alamos, ¹w Mexico 8?545

H. D. Wohlfahrt and G. Fricke
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R. M. Steffen
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The results of precise measurements of the energies of the 2p3/2~1s», and 2p„,~ls, „muonic x-ray
transitions of "Fe, ' Fe, "Fe, "Fe, "Co "Ni, Ni, 'Ni 'Ni, "Ni 'Cu, 'Cu, "Zn ' Zn "Zn, and ' Zn are
reported. Using a highly linear digitally stabilized Ge(Li) spectrometer system, the absolute energies and
energy shifts between nuclei were measured with total errors of approximately 40—60 eV (110 eV for ' Zn).
The data were analyzed in terms of the Barrett moments ( r"e ")of the nuclear charge distributions from
which the equivalent nuclear radii R„and the isotopic and isotonic differences 5R„were computed. Particular
attention was given to higher-order corrections of the energies of the muonic states. Appropriate quantum-
electrodynamical corrections were calculated to all significant orders. Nuclear polarization corrections for
multipole interactions up to and including L = 4 were computed for each isotope. The b, A = 2 isotone shifts
SR„for even A isotopes show a strong shell closure effect at Z = 28, which is quite independent of the
neutron number. The hX = 2 isotope shifts between even nuclei decrease smoothly and uniformly with
increasing N from X = 28 to N = 40 and are essentially independent of Z. This unexpected behavior suggests
that the added neutrons interact with the entire proton core rather than with the valence protons. The hN = 1

isotope shift results show a pronounced odd-even staggering effect, which, however, is somewhat smaller than
theoretical predictions. The isotone series "Fe-' Co- Ni, which is just below the Z = 28 shell closure, shows
strong odd-even staggering, whereas the series»- 'Cu-"Zn and 'Ni- 'Cu- 'Zn just above Z = 28 exhibit only
a very small staggering effect, A comparison of the experimental data of the rms radii ( r')'" with the
results of spherically constrained Hartree-Fock calculations shows good agreement for all four Zn isotopes and
the heavier Ni isotopes ( Ni, Ni, 'Ni), but poor agreement for the Fe isotopes and "Ni.

NUCLEAR STRUCTURE, MOMENTS ' 6' '58Fe, 5~Co, 58'6 '6'62'64¹i @'6 Cu,' Zn; measured muonic x-ray spectra; deduced nuclear charge param-
eters, isotope and isotone shifts, Calculated quantum-electrodynamic and
nuclear-polarization corrections. Compared charge parameters with Hartree-.

Fock cal.culations.

I. INTRODUCTION

Detailed investigation of the rearrangement of
the nuclear charge distribution in xesponse to the
addition of neutrons or protons throughout a whole
series of isotopes provides a valuable and strin-
gent test of one's understanding of the structure
of nuclear ground states.
The usual expression for nuclear radii, R =

roA'~', which can be derived on the basis of a
classical liquid drop model, represents only a
crude average as A varies along the stability val-
ley in an N versus Z plot. The average A' ' be-
havior does, however, serve as a useful standard
of comparison from which to judge individual vari-
ations of the charge radius. Figure 1 presents
the existing muonic isotope shift data' for even
nuclei in the region A=20-126. To emphasize the

departure from A' ' behavior the experimental
shift values have been divided by the "standard"
shift 5R'„'~=I/3(nA/A)R„(the Barrett equivalent
radius R, is defined in Sec. II). The figure illu-
strates that the A'~' behavior is strongly modified
by nuclear shell structure. One observes that the
isotope shifts are largest at the beginning of a
neutron shell and become quite small (in fact,
negative in two regions) just before the major shell
closures at N=28, 50, 82, and 126.
In the present paper, results for muonic atoms

from the lightest stable Fe (A = 54) to the heaviest
stable Zn (A ='IO) are reported. ' In this range of
nuclei one observes the effect of adding nucleons
in the 2p»„1f,&„and2p», neutron shells and
the 1f,&, and 2p», proton shells.
It was the goal of this experiment to determine

accurate differences of nuclear charge distribu-

731
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TABLE II. Same as in Table I

Z�Element A ��ENP
1S ��EnP

1S Total NP Entry in [7] Goal

26�Fe 54 371(37)(21)(19) 48(5)(3)(1) 419(47) 362(109) 48

56 384(38)(22)(20) 49(5)(3)(1) 433(49) 403(121) 44

57 391(39)(22)(20) 50(5)(3)(1) 441(50) 390(117) 56

58 397(40)(23)(20) 50(5)(3)(1) 447(50) 400(120) 54

27�Co 59 433(43)(26)(23) 56(6)(4)(2) 489(56) 438(131) 50

28�Ni 58 459(46)(29)(25) 59(6)(4)(1) 518(60) 437(131) 46

60 467(47)(30)(25) 61(6)(4)(1) 528(61) 461(138) 45

61 476(48)(30)(26) 62(6)(4)(1) 538(63) 426(138) 54

62 484(48)(31)(26) 62(6)(4)(1) 546(64) 458(138) 45

64 502(50)(33)(27) 64(6)(4)(1) 566(66) 438(138) 49

29�Cu 63 506(51)(35)(29) 68(7)(5)(1) 574(68) 538(161) 47

65 530(53)(36)(30) 70(7)(5)(1) 600(71) 489(147) 49

30�Zn 64 545(54)(39)(32) 73(7)(5)(1) 618(75) 609(183) 47

66 565(56)(41)(33) 75(8)(5)(1) 640(78) 595(179) 45

68 585(59)(43)(34) 77(8)(6)(1) 662(81) 581(174) 32

70 606(61)(45)(35) 79(8)(6)(1) 685(84) 615(184) 131

31�Ga 69 616(62)(48)(37) 83(8)(6)(1) 699(87) 567(169) 12

71 647(65)(50)(38) 86(9)(7)(1) 733(91) 551(165) 12

32�Ge 70 662(66)(54)(40) 89(9)(7)(1) 751(95) 706(212) 16

72 671(67)(55)(42) 92(9)(8)(1) 763(97) 738(221) 12

73 683(68)(56)(42) 93(9)(8)(1) 776(99) 700(210) 24

74 694(69)(57)(43) 94(9)(8)(1) 788(101) 839(242) 17

76 719(72)(60)(44) 96(10)(8)(1) 815(104) 819(246) 15

33�As 75 737(74)(64)(47) 101(10)(9)(2) 838(109) 761(228) 10

34�Se 76 775(78)(71)(50) 107(11)(10)(2) 882(117) 1036(311) 16

77 790(79)(72)(51) 109(11)(10)(2) 899(119) 790(237) 16

78 805(80)(74)(52) 110(11)(10)(2) 915(122) 949(285) 13

80 835(83)(76)(54) 113(11)(10)(2) 948(126) 872(262) 12

82 865(87)(79)(56) 116(12)(11)(2) 981(133) 814(244) 19

35�Br 79 850(85)(81)(56) 117(12)(11)(2) 967(131) 933(280) 17

81 883(88)(84)(58) 120(12)(11)(2) 105(136) 827(248) 20

36�Kr 78 858(86)(86)(57) 121(12)(12)(2) 979(136) 1183(355) 40

80 892(89)(90)(59) 124(12)(12)(2) 1016(141) 1071(321) 40

82 927(93)(93)(62) 128(13)(13)(2) 1055(146) 938(281) 40

83 946(95)(95)(63) 129(13)(13)(2) 1075(149) 936(281) 47

84 962(96)(96)(64) 131(13)(13)(2) 1093(152) 838(251) 39

86 997(100)(100)(67) 134(13)(13)(2) 1133(157) 866(260) 34

37�Rb 85 1014(101)(106)(69) 139(14)(14)(2) 1151(163) 853(256) 10

87 1051(105)(109)(71) 142(14)(15)(2) 1193(169) 807(242) 14

38�Sr 84 1034(103)(112)(71) 145(14)(16)(3) 1179(169) 1136(341) 24

86 1061(106)(115)(73) 147(15)(16)(3) 1208(174) 929(279) 11

87 1082(108)(118)(75) 149(15)(16)(3) 1231(178) 843(253) 49

88 1101(110)(120)(76) 151(15)(16)(3) 1252(181) 937(281) 8

39�Y 89 1165(116)(132)(81) 158(16)(18)(3) 1323(195) 867(260) 9

40�Zr 90 1218(122)(143)(86) 166(17)(20)(3) 1384(208) 975(292) 10

91 1198(120)(142)(86) 167(17)(20)(3) 1365(206) 957(287) 33

92 1212(121)(144)(87) 169(17)(20)(3) 1381(209) 984(295) 13

94 1237(124)(148)(89) 171(17)(20)(3) 1408(214) 946(284) 15

96 1266(127)(153)(91) 174(17)(21)(3) 1440(220) 966(293) 36

41�Nb 93 1264(126)(156)(92) 177(18)(20)(3) 1441(223) 1127(338) 16
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87 1082(108)(118)(75) 149(15)(16)(3) 1231(178) 843(253) 49

88 1101(110)(120)(76) 151(15)(16)(3) 1252(181) 937(281) 8

39�Y 89 1165(116)(132)(81) 158(16)(18)(3) 1323(195) 867(260) 9

40�Zr 90 1218(122)(143)(86) 166(17)(20)(3) 1384(208) 975(292) 10

91 1198(120)(142)(86) 167(17)(20)(3) 1365(206) 957(287) 33

92 1212(121)(144)(87) 169(17)(20)(3) 1381(209) 984(295) 13
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From	F	&	H	2004,	30%	error	assumed

Istvan’s	talk



aμA
1S = (Zαmμr)−1 ≈ 250 fm Z−1

Rch

a

Rch ≈ 1.1 fm × A1/3

aeA
1S = (Zαmer)−1 ≈ 500 000 fm Z−1

Lepton	feels	pointlike	Coulomb	poten5al	far	outside	the	nucleus	

Finite	size	effects	modify	this	poten5al	in	the	vicinity	of	the	nucleus	

Interplay	between	atomic	and	nuclear	radii

Nuclear Charge Radii from µ atoms

≫

From	Z	~	50	 	—	very	sensi5ve	to	nuclear	radiiRch ≈ aμ
1S

ΔE1S ∝ Zαmr(Rch/aμ
1S)2

For	precision:	include	higher-order	correc5ons	(QED	+	nuclear	structure)	

QED:	numerical	solu5ons	of	Dirac/Schroedinger	radial	equa5ons,	or	analy5cal	 -expansionZα



Muon	may	induce	polariza5on	of	the	nucleus		

Structure	constant	 	—>	electric	dipole	polarizability	

Charges	inside	nucleus	are	displaced	against	each	other	

	has	dimension	of	volume

αE1

αE1

In presence of nuclear polarization

ΔE1S ∝ − Zαmr αE1/(aμ
1S)3

Empirical	scaling	(giant	dipole	resonance)	 	

Effec5vely	shiXs	the	extracted	radius	by	

αE1 ≈ 0.00225A5/3 fm3

δRch

Rch
∝

αE1

2R2
ch aμ

1S
∝

Zαmr 0.00225 fm3 × A5/3

2 × (1.1 fm × A1/3)2
∼ 3.6ZA × 10−6

Typical	precision	 	—>	precision	requirement	on	NPδR /R ∼ 10−4 104 δRch

Rch
∼ 7

Z
10

A
20

Accuracy	of	calculated	NP	reflects	directly	in	the	precision	of	nuclear	radii	(not	via	this	formula)



First	approxima5on:		

nucleus	much	smaller	than	atom		

nuclear	energy	splixngs	much	larger	than	atomic	energy
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2nd	order	perturba5on	theory:

Ericson,	Hüfner	1972	
Friar	1977Perturba5on:	transi5on	induced	by	Coulomb	interac5on	
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tain the semiclassical approximation

nz, = &f I v„(r)I f &, (4a)

i „(r)= +&01~,(r) ~,(~.)l 0&, (4b)
/~0 ~0-~~

o( (f q, q. , „( )p q
q

(5a.)

(5b}
which has the classic form of a polarization poten-
tial and is the "A" term of Ref. 9. Rather than
proceeding along these lines, it is profitable to
Fourier transform the matrix element in Eq. 3
(using G, ). We also write ~, in the form

where p(r} is the nuclear charge operator, and
its Fourier transform satisfies P(q =0)=Z. We
also define f exp(iq r) (t((r) d'r to be (t((q). We
obtain

(4r)'o' ~, . . .-„&oIp(-q')I && &l(fl P(q")I o&
1~0 @ +9

(6)

n.Eo=-Bo'I y(0)l' . '; (i&g, (Ba)
o q ~,„~+(f

mhere

w'. (e, ~) = Q I&h'I p(q)l o& I'6(~ —~~)
g&0

(Bb)

is the usual inelastic Coulomb response function
obtainable from electron scattering~'" above the
inelastic threshold &u„,. We will evaluate Eq. (8)
using a crude model in Sec. IV.
Equations (7) and (8) demonstrate the fact that

the convergence of the q integral may be drastic-
ally altered by approximations and that the model

One of the primary approximations used in Refs.
6 and 8 (besides the replacement G, -G„.) results
from the recognition that the momentum compo-
nents of the atomic wave function p are confined
to reasonably small values. For the 1S state, for
example, P(q)-P/(q'+P2)', with (8 =P&p roughly
an MeV in size for p-He. All the other energy and mo-
mentum scales in Eq. (6) are considerably larger, and
thus p(q}=0 unless q=—0. The expression for p
above is an adequate representation for a 5 func-
tion provided P is small and we may approximate
&(((q) by p(0)(2w)'6'(q) for any S state. For lack of
a better name, me will call this low -Z approxi-
mation the wave function app~oxin~ation, mhich
simplifies Eq. (6) to the form

~E 2
'

I @(0}l.~ d'ql&&lp(q)l &

(( ~~ q4((u„+q'/2p)

after dropping &0 compared mith u„, this is the
nonrelativistic version of the model of Bernabeu
and Jarlskog. ' The comparison is most easily
made by dropping all magnetic (transverse), re-
tardation, and other relativistic effects in the re-
sults of Ref. 8 and re(writing Eq. (7) in the form

dependence of the r(: ul (iE~) depends in a signifi-
cant way on the extent to which the q dependence of
W, is needed to cut off the q integral. Because me
are dealing only with inelastic virtual transitions,
the threshold behavior of W, is determined by di-
pole states and g, -q' for small q'; thus there are
no small-q (infrared) problems with Eq. (8). A
natural approximation would be to ignore the q'
dependence of the denominator. This is the same
as Eq. (4b) after the wave function approximation
and places the burden of convergence on W, .
Clearly, results obtained using this approximation
could be quite model dependent. Furthermore, for
small IL(, some damping must be provided by W, or
the nonrelativistic approximation mill be completely
inadequate for lepton intermediate states. This is
the case for electrons. "'" For muons, p, is suf-
ficiently large that the denominator in Eq. (Bc}pro-.
vides most of the convergence needed in the non-
relativistic regime.
Experience'~'" has shown that dipole excitations

are the most important in calculating polarization
corrections. For nuclear transitions from spin-
less ground states to 1 states, angular momentum
considerations lead to

&Nl p(q)l 0& =iq ~ D~oFN(q2),

where F„(0)= l and D is the nuclear dipole oper-
ator. The unretarded dipole appxoxi mati on consists
of neglecting I „; although it is clearly incorrect
for large q', it guarantees the correct threshold
properties. Furthermore, it relates the matrix
element of p to photoabsorption, s4nce at lorn pho-
ton energies the unretarded dipole approximation
is excellent and current continuity" then relates
current matrix elements to D„„. An alternative
derivation of the same result in coordinate space
is instructive. We expand I r-r„l according to

16 N UC LEAR POLARIZATION CORRECTION S IN p- He ATOMS

state energies can be achieved using the unretarded
dipole approximation, which has been somemhat
useful in calculating dispersion corrections for
lom-energy electron scattering. "" Keeping only
first-order Coulomb distortion effects me mill find
for S states

&E,"= ~u —I y(0)l'[o, g. +go~2p, (o', +ac, )],
where

g ), —= (d 0'~b3 (d dh) y

th

0' ), = (d EF~b3 43 ln +A 2p. (d d4P ~

th

[These are Eqs. (26a) and (26c) of Sec. III.] In this
expression p. is the muon-nucleus reduced mass,
y(0) is the muon wave function at the nucleus,
o~&»(~) is the total photoabsorption cross section
of a nucleus for a photon mith energy ~, g is the
proton number, and a is a state-dependent con-
stant. Since g, is essentially proportional to ~~
and p,~, is a closely related quantity, observation
(2) above is confirmed. Both quantities may be
deduced from recent experiments. "'" This equa-
tion is one of our primary results; note that no
cutoff is needed. More accurate numerical results
than those given by Eq. (26) will be obtained by re-
laxing the unretarded approximation and will con-
firm the results of Hinker' and Bernabeu and Jarls-
kog s

II. GENERAL FORMALISM

Our primary assumptions in this work will be:
the nonrelativistic treatment of both the muon and
nucleus, and the ignoring of all but the static Cou-
lomb interaction between the tmo systems. The
first step" is to separate the Coulomb interaction
into a piece Ho mhich is elastic mith respect to the
nucleus and a piece ~, which generates only nu-
clear transitions. The first piece is treated to all
orders by including it as part of the unperturbed
lepton Hamiltonian, and it generates the usual
static hydrogenic spectrum modified by the nuclear
charge distribution plus recoil corrections. " The
second piece ~, generates nuclear transitions and
is treated perturbatively; it contributes to the en-
ergy in second- and higher-order perturbation the-
ory. Because both the nuclear finite size and the
nuclear polarization generate small corrections, it
is sufficient to restrict ourselves to a second-
order treatment of ~, and to ignore the nuclear
finite size while doing so. With these assumptions
the polarization correction in the lepton-nucleus

center-of-mass frame becomes

gE, = Q &0 I ~.l pr &
N~0

~E = g &o'
I ~, I

hl'& G(-E„)&~l nH, I
o'& . (2)

N ~0

A more useful form may be obtained by noting that
the nuclear matrix element &Nl ~, I 0) is just the
lepton transition potential 6 V„(r), where r is the
vector from the nuclear center of mass to the
lepton. This leads to

aZp= ~ a~N r t"c -F.Nir, r' ZVN r' (3)

in an obvious notation which emphasizes the lepton
coordinate. We wish to evaluate ~F~ for four spec-
ial cases: (a) ignore the Coulomb attraction in the
lepton states and use the nonrelativistic equivalent
of the nuclear model of Bernabeu and Jarlskog
(denoted BJ); (b) ignore Coulomb effects and use
dipole nuclear states only; (c) ignore Coulomb ef-
fects and use the umeIa~ded dipole approximation;
(d) work in the unretarded dipole approximation
and include first-order Coulomb distortion effects.
We begin our discussion by ignoring Coulomb

effects in the Green's function G„. in this limit G,
is essentially the nonrelativistic free Green's
function for complex momentum. We find that G,
-G.= -v, exp(-~„l r —r' I)/2vl r —r' I, where K„
—= (2p,E„)' . The first observation is that y„ is a
number which varies roughly from —,'--," over the
region of the intermediate nuclear spectrum which
can be expected to dominate the polarization cor-
rections; furthermore, the exponential is small
unless r and r' are «&g&~p equal. Clearly the
latter situation becomes a better and better ap-
proximation as FN increases. Therefore, as a
rough approximation we may write G, -=X5'(r- r')
and, integrating with respect to r, we find X = -1/
E„Substitutin. g this result into Eq. (3), we ob-

&ÃI ~II. I o &, (1)
- n &O &n

where we have labeled by I N& each internal nuclear
state mhich has energy ~N mith respect to the nu-
clear ground state, and by I n& each lepton state in
the center of mass which has an energy g„. In ad-
dition, I

0'& is simultaneously the ground state of
the nucleus I 0) and the unperturbed atomic state
I i &, which we denote by p(r) in coordinate space;
the latter state has an energy eo. We have written
the lepton intermediate state I n& in a way that em-
phasizes that the bracket contains the Coulomb
Green's function. "" Defining E„=sr„—eo (&0),
the Green's function is denoted G(-E„) and we may
rewrite Eq. (1) in the form
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Start	with	leading-order	result: ΔEnℓ =
8α2m

iπ
ϕnℓ(0) |2 ∫ d4q

(q2 − ν2)T2 − (q2 + 2ν2)T1

q4(q4 − 4m2ν2)
Bernabeu-Jarlskog	1974	
Rosenfelder	1983

Npol-induced	poten5al	-	 -func5on	at	origin;	rela5vis5c	treatment	of	nuclear	systemδ
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],

�En` =
8↵2m

i⇡
|�n`(0)|2 (1)

⇥
Z

d4q
(q2 � ⌫2)T2 � (q2 + 2⌫2)T1

q4(q4 � 4m2⌫2)

with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1

4M
F1(⌫, q

2)

ImT2(⌫, q
2) =

1

4⌫
F2(⌫, q

2). (2)

The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]

⇥
�Ehadr

2S

⇤
µD

= �28(2)µeV. (3)

The respective contribution to the nS level in a muonic
atom µA will then read as

⇥
�EnP

nS

⇤
µA

= �28(2)µeV
|�µA

nS (0)|2

|�µD
2S (0)|2

A

2
. (4)

Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,

�ENP
nS = �8↵2|�nS(0)|2

Z 1

0

dq

q2

Z 1

0

d⌫SL(⌫,q)

⌫ + q2/2m
, (5)

where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
��(⌫)

4⇡2↵⌫
F 2(q), (6)

with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,

↵E1 =
1

2⇡2

Z
d⌫

⌫2
��(⌫). (7)

The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at

�ENP

nS = �2⇡↵|�nS(0)|2↵E1

p
2m⌫̄ e�

2
(⌫̄)Erfc(�(⌫̄)),

(8)

with �(x) = 2mxR2

ch
/3, Rch standing for the respective

nuclear charge radius, and Erfc is the complementary er-
ror function. Ref. [40] represents NP as an “⌘-expansion”

ΔEnℓ =
8α2m

iπ
ϕnℓ(0) |2 ∫ d4q

(q2 − ν2)T2 − (q2 + 2ν2)T1

q4(q4 − 4m2ν2)
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range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],

�En` =
8↵2m

i⇡
|�n`(0)|2 (1)

⇥
Z

d4q
(q2 � ⌫2)T2 � (q2 + 2⌫2)T1

q4(q4 � 4m2⌫2)

with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1

4M
F1(⌫, q

2)

ImT2(⌫, q
2) =

1

4⌫
F2(⌫, q

2). (2)

The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]

⇥
�Ehadr

2S

⇤
µD

= �28(2)µeV. (3)

The respective contribution to the nS level in a muonic
atom µA will then read as

⇥
�EnP

nS

⇤
µA

= �28(2)µeV
|�µA

nS (0)|2

|�µD
2S (0)|2

A

2
. (4)

Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,

�ENP
nS = �8↵2|�nS(0)|2

Z 1

0

dq

q2

Z 1

0

d⌫SL(⌫,q)

⌫ + q2/2m
, (5)

where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
��(⌫)

4⇡2↵⌫
F 2(q), (6)

with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,

↵E1 =
1

2⇡2

Z
d⌫

⌫2
��(⌫). (7)

The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at

�ENP

nS = �2⇡↵|�nS(0)|2↵E1

p
2m⌫̄ e�

2
(⌫̄)Erfc(�(⌫̄)),

(8)

with �(x) = 2mxR2

ch
/3, Rch standing for the respective

nuclear charge radius, and Erfc is the complementary er-
ror function. Ref. [40] represents NP as an “⌘-expansion”

Im	parts	of	forward	Compton	amplitudes		

~	photoabsorp5on	data

Real	photoabsorp5on	data:		

Nuclear	range	 	

Hadronic	range	

ν < 140 MeV

ν ≥ 140 MeV
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FIG. 1. The fixed-pole contribution to the Compton amplitude
may arise due to an effective local two-photon coupling to elementary
constituents within the proton.

QCD partons and we extract the α = 0 pole contribution to
scattering at asymptotic energies for various nuclear targets.
Our summary and conclusions are presented in Sec. IV.

II. NUCLEAR PHOTO-ABSORPTION AT LOW ENERGIES

The spin-averaged forward Compton scattering amplitude
T (ν) satisfies a once-subtracted dispersion relation where the
subtraction constant at ν = 0 is determined by the classical
Thomson limit,

ReT (ν) = −Z2

A2

α

MN

+ ν2

π

∫ ∞

0

dν ′2

ν ′2(ν ′2 − ν2)
ImT (ν ′),

(1)

where the integral in Eq. (1) is understood in terms of
its principal value. To facilitate easier comparison between
different nuclei we have normalized T (ν) by dividing it by A,
the number of nucleons. The nuclear Thomson term, i.e., the
constant on the r.h.s. of Eq. (1) is given in terms of the fine
structure constant α, the net charge Z of the target, and the
mass of the nucleus given by A times the nucleon mass, MN (in
the following we ignore isospin breaking terms). The optical
theorem relates the imaginary part of the Compton amplitude
to the total photoabsorption cross section per nucleon σ (ν),

ImT (ν) = ν

4π
σ (ν), (2)

so that the dispersion relation takes the form

ReT (ν) = −Z2

A2

α

MN

+ ν2

2π2

∫ ∞

0

dν ′

ν ′2 − ν2
σ (ν ′). (3)

To evaluate the dispersive integral, strictly speaking the
photoabsorption cross section should be included all the
way up to infinite energy; however, the scale separation
between the nuclear and hadronic domains allows us to
approximate the integral by using a limited range of nuclear
photoabsorption data. As shown in Fig. 2, for a typical target
nuclear resonances saturate the photoabsorption cross section
for energies below Emax ≈ 30 MeV. The dominant feature
of nuclear photoabsorption in the MeV range is the giant
dipole resonance (GDR) (cf. Ref. [24] for a comprehensive
review of GDR data and theory). As an example, the 207Pb
data in the nuclear range are plotted along with the higher
energy data in Fig. 2, in which the GDR is seen as a sharp
peak with width %GDR ≈ 7 MeV. We evaluate the dispersion
relation at νmax ! 100 MeV, which roughly demarcates the
scale of hadronic physics where single-nucleon resonances

FIG. 2. (Color online) Photoabsorption cross-section data for a
207Pb target. Data in the nuclear range ν " 27 MeV (crosses) are
from Ref. [19]; data in the hadronic and high-energy range 0.2
GeV" ν "100 GeV are from Refs. [20–23]. Nuclear deformations
are responsible for the giant resonance that saturates the cross section
for ν ! 100 MeV (region I). Excitations of individual nucleons are
responsible for the hadronic resonances (region II) in the energy
range between pion production threshold and O (2–3 GeV). Finally,
for energies above a few GeV (region III), the smooth cross section
is the result of partonic scattering via Regge exchanges.

begin contributing to the cross section,

ReT (νmax) ≈ −Z2

A2

α

MN

− 1
2π2

∫ Emax

0
dν ′σ (ν ′). (4)

For an energy that is low compared to the hadronic scale,
the scattering amplitude can be approximated by the sum of
contributions describing photon interactions with point-like
nucleons, i.e., it is given by a sum of Thomson terms on Z
protons,

ReT (νmax) ≈ −Z

A

α

MN

. (5)

Combining Eqs. (4) and (5) leads to the Thomas-Reiche-Kuhn
sum rule [1] (with α/MN ≈ 3.03 mb MeV),

∫ Emax

0
dνσ (ν) = 2π2 NZ

A2

α

MN

≈ 60
NZ

A2
mbMeV. (6)

Furthermore, adopting a Breit-Wigner form for the GDR cross
section,

σ (ν) ≈ σGDR(ν) = M2
GDR%2

GDRσGDR
(
ν2 − M2

GDR

)2 + M2
GDR%2

GDR

, (7)

the integral over the resonance photoabsorption cross section
gives πσGDR%GDR/2, and the TRK sum rule leads to the
relation

σGDR%GDR ≈ 12π
NZ

A2
mb MeV. (8)

In Eq. (8), σGDR is the value of the photoabsorption cross
section at the peak of the GDR resonance, and %GDR is the
resonance half-width. This sum rule has been confronted with
experimental data on a vast number of nuclear targets and is
found to be satisfied to within ∼30%. This level of agreement
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Baldin	sum	rule	(rela5vis5c)

αE + βM =
1

2π2 ∫
∞

thr

dν
ν2

σγ(ν)

Nonrela5vis5c	version:		
Migdal	sum	rule

αE1 =
1

2π2 ∫
νmas

thr

dν
ν2

σγ(ν)

Total	photoabsorp5on	data	in	hadronic	range:	scales	as	~A	

Nuclear	polarizability	scales	as	A5/3
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FIG. 3. (Color online) High energy photoabsorption cross sections per nucleon for six nuclear targets compared to the fit results (solid
lines) using the Breit-Wigner resonance plus background pametrization of Eq. (19). Data are from Ref. [26] for the proton and the deuteron,
and from Refs. [21–23] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The background fit parameters are
given in Table I.

this relies on a mean-field approach to the target, which we
would expect to become more accurate as the number of
target nucleons increases. For the α = 0 pole contribution,
our new result for the proton is significantly different from
the Thomson term, which is at variance with the original
result of Damashek and Gilman [5]. This discrepancy is
due to our use of the very high energy photoabsorption
data that has become available only recently [27]. As a
result, instead of the high-energy parametrization used in
Ref. [5],

σR+P (ν) ≈
(

96.6 + 70.2

√
1 GeV

ν

)

µb, (23)

we find

σR+P (ν) ≈
[

68.0
( ν

1 GeV

)0.097
+ 99.0

√
1 GeV

ν

]

µb. (24)

At an energy ν = 1 GeV, both formulas give almost identical
results, but at high energies they differ dramatically. At the

same time, the data in the resonance region have not changed
much, so this leads to our new value for the α = 0 contribution
to photoabsorption on the proton.

For heavier nuclei, however, the bottom panel of Fig. 4
and the final row of Table II show that the α = 0 contribution
appears to be consistent with the Thomson term. This result is
due to an interplay of various nuclear effects in the resonance
region that affect the value of the integrated photoabsorption
cross section and also shadowing at medium-to-high energies.
Shadowing at energies below ν = 200 GeV causes the value
of cP to decrease from 68 µb for the proton to approximately
43 µb for lead, respectively. On the other hand, the Pomeron
is a QCD phenomenon that is due to the interaction of
quarks and gluons and should be the leading mechanism of
photoabsorption at extremely high energies. It can be expected
that at asymptotic energies nuclear effects should be negligible,
and the strength of the Pomeron should be the same for
both the proton and heavier nuclei. If in the future nuclear
photoabsorption data above ν = 200 GeV becomes available,
they could shed more light on the asymptotic behavior of

TABLE I. Reggeon and Pomeron parameters in µb

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

cP (µb) 68.0 ± 0.2 70.08 ± 1.26 57.24 ± 1.13 62.70 ± 6.0 45.88 ± 0.57 42.08 ± 1.96
cR (µb) 99.0 ± 1.15 80.50 ± 2.27 76.49 ± 4.40 53.53 ± 11.6 76.95 ± 3.60 91.43 ± 9.14

065202-5

228 M. Miruziia et al. /Physics Letten B 407 (1997) 22.5-228 

Invariant mass [GeV] 
1.2 

2 
1.5 1.8 2.1 2.4 / / 1 

Carbon (a) : 

1.5 

I 
^c 
z” 

9 . Lead (b) 

a” 
1.5 

1 

0 0.5 1 
Ener&5[GeV; 

2.5 3 

Fig. 3. Ratio of photonuclear and photonucleon absorption cross 
section. Same notation as Fig. 2. Solid line is a A-hole model [ 191 
while dashed [ 131 and dotted [ 141 lines are VMD predictions. 

sorption cross section for carbon and lead nuclei in the 
energy range 0.5 + 2.6 GeV, using the photohadronic 
technique with a 47r NaI detector to detect hadronic 
events and a lead-glass counter to tag the electromag- 
netic ones. From the comparison between the results 
for the nuclei and previous data for the free nucleon, 
we showed a considerable reduction of the cross sec- 
tion that could be ascribed to a low energy onset of 
the shadowing effect. 
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their continuous technical assistance and the ELSA 
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Abstract 

The total pho~abso~tion cross section for carbon and lead has been measured in the energy range 0.5 -& 2.6 GeV at 
Bonn using the SAPHIR tagged photon beam. Nuclear data show a si~ificant reduction of the abso~tion strength with 
respect to the free nucleon case suggesting a shadowing effect at low energies. @ 1997 Elsevier Science B.V. 

PACS: 25.20.Gf: 12.4O.V~ 
Keywonls: Photoabsorption; Shadowing; Nuclear medium effect 

The study of nuclear medium effects on the ele- 
mentary couplings and the properties of hadrons is 
one of the main fields of interest in modern nuclear 
physics. The experimental finding of shadowing in the 
real photon absorption on nuclei has been largely ex- 
plored during the ‘7Os, in a wide photon energy range 
k N 2 t 200 GeV [ I-51. The effect was generally 
explained in terms of the vector meson dominance 
(VMD) model which was able to reproduce the ex- 
perimental behavior. [ 61 

Interest in this field has been recently renewed for 
different reasons: 

i) low energy photoabsorption and photofission ex- 
periments at Frascati [7,8] and Mainz [9] showed a 
large nuclear medium effect in the second and third 

nucleon resonance region with a depletion of the 
absorption strength with respect to the free nucleon 
case; ii) deep inelastic experiments at Cm [ lo] 
and FNAL [ 111 have proved a large shadowing ef- 
feet at low x (X being the Bjorken variable) and 
close to the real photon point; iii) theoretical specula- 
tions derived from QCD sum rules suggest hadronic 
mass modifications in the nuclear medium and in 
particular a large decrease of the p-meson mass pp 
up to 10 f 15% 1121. This reflects into an increase 
of the coherence length of the hadronic fluctua~on 
A, = 2k/& of the photon thus lowering the energy 
threshold for the shadowing effect; iv) recent standard 
VMD calculations predict a negligible shadowing ef- 
feet [ 131 or an anti-shadowing behavior [ 141 in the 
photon energy region below 2 GeV. 

* Corresponding author. Email: bi~chi@lnf.infn,it. 
All these ~guments raised the interest to look for 
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Fit	to	nuclear	photoabsorp5on	—	CS	per	nucleon

Oscilla5ng	around	Aeff	=	A	in	resonance	region;	

Shadowing	(Aeff	<	A)	at	high	energies	

For	µ-atoms:	ν̄ = σ−1/σ−2 ∼ 500 MeV
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Fig. 1. The average yields measured with different, solid-angle 
coverage of the HD. The carbon target data (open cncles) are 
compared with the MC prediction (dashed line) for Ea = 2.8 
GeV, the lead target data (close circles) are compared with the 
MC prediction (solid line) for EO = 2.2 GeV. The arrow indicates 
the solid angle loss relevant to the rn~~~nt position. 

overlapping regions and provided a good check of the 
systematic errors that could arise from different run- 
ning conditions. Fig. 2a) shows the cross sections on 
carbon measured at the three electron beam energies. 
In Figs. 2b) and 2c) the carbon and lead data are 
shown averaged over bins of about 100 MeV together 
with previous data on the same nuclei. The solid line 
is the absorption cross section on the proton. The bars 
indicate the statistical errors while the bands at the 
bottom of the figures represent the systematic errors. 
The latter ones were mainly due to uncertainties in the 
target thickness (0.5% for carbon and 1.5% for lead), 
in the photon beam flux ( N 1%) , in the back~ound 
subtraction (N 1 + 3%) and in the MC correction (N 
2 f 5%). Present data are well in agreement at low 
energy with data of Ref. 171 within the statistical er- 
rors and, at high energy, with data of Ref. 121 within 
the statistical plus systematic errors. 

The new data confnm the absence of the second 
and third nucleon resonance structures in the bound 
nucleon cross section. They also show a significant re- 
duction with respect to the free nucleon cross section 
above 1.2 GeV, where resonance effects are expected 
to be small. The reduction is emphasized by the ra- 
tio of the measured nuclear cross section to the free 
nucleon one. Fig. 3 shows the ratios of the measured 
cross sections for carbon and lead to the free nucleon 
one, derived in a previous paper [7] by fitting proton 
and deuteron data. As can be seen the reduction in 

c 
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F ig . 2. (a)Total cross section measured on Carbon at three elec- 
tron beam energies: 2.8 GeV (triangles), 2.2 GeV (circles) and 
1.6 GeV (squares). (b)Total averaged cross section measured 
on carbon (solid circles) compared with previous experiments : 
squares [ 11, diamonds 121, triangles [ 41, open circles [7] and 
crosses [ 201. Also shown is the proton absorption cross sec- 
tion( solid line). (c)Same as (b) but for lead. 

the 1.2 + 2 GeV energy range, seems to be bigger for 
the lighter nucleus. This effect could be due to shad- 
owing onset at lower energy for light nuclei and to a 
wider broadening of nucleon resonances in heavy nu- 
clei. Also shown in Fig. 3, are the low-energy calcu- 
lation of a A - hate model [ 191 and two recent VMD 
predictions above the resonance region [ 13,141. Both 
VIvID calculations assumed p, = 770 MeV. They are 
systematically higher than the data and thus do not pre- 
dict the nuclear damping of the cross section clearly 
indicated by this experiment. Moreover in Ref. I: 141 
the inclusion of nucleon correlations leads to an anti- 
shadowing behavior below 2 GeV. Therefore a differ- 
ent parameterization of the low-energy shadowing ef- 
fect, in terms of spreads and shifts of vector-meson 
masses and of the low-energy behavior of the V-N 
cross sections could be considered in order to better 
reproduce the experimental data. 

In summary we have measured the total photoab- 
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FIG. 1. Full squares: σ−2 data deduced from relativistic Coulomb
excitation experiments for 208Pb [18], 120Sn [17], and 68Ni [21,22] and
from total photoabsorption experiments for 40Ca, 27Al, 16O, and 12C
[19]. Error bars are partly smaller than the symbol size. Short-dashed
(green) and long-dashed (blue) lines: Empirical formulas (1) and (2).
Dotted (red) line: Equation (4) using symmetry energy parameters of
Ref. [27]. Dashed-dotted and full black lines: Fit to Eq. (4) including
and excluding the 12C data point.

[18]. Additionally, total photoabsorption data in light nuclei
over a wide energy range are reported in Ref. [19]. Although
natural targets were used in these measurements, a single
isotope is most abundant for each element. Thus, the results are
representative for 12C, 16O, 27Al, and 40Ca. (Note that Ref. [19]
also provides data for 7Li and 9Be but the hydrodynamical
picture is highly questionable and corrections due to the
magnetic polarizability are large [20] for these very light
nuclei.) Magnetic contributions to the σ−2 values have been
separated for 120Sn [13] and 208Pb [12] and can generally be
neglected for A ! 12.

This set of data including a recent result for 68Ni [21] with
corrections for unobserved strength [22] is shown in Fig. 1 as
full squares. The value for 40Ca [σ−2 = 2.05(10) mb/MeV]
differs from Table II in Ref. [19] because the data with very

coarse energy binning in the GDR energy region were replaced
by subsequent results with finer energy steps by the same
group [23], cf. Ref. [24]. The data cover a wide range of mass
numbers and thus permit a test of Eqs. (1) and (2) shown as
short-dashed (green) and long-dashed (blue) lines in Fig. 1,
respectively.

The experimental results are systematically larger than
Eq. (1) as expected from the above arguments. The deviation
increases towards smaller mass numbers. Equation (2) leads
to similar results for heavy nuclei. The description for lighter
masses is improved but still underestimates the data except
for 12C. The numerical coefficients in Eq. (2) stem from the
mass dependence of the symmetry energy [Eq. (3)] using the
parameters of Ref. [7] (Sv = 28.3 MeV, κ = 1.27). Similar
values have been reported by Ref. [25]. However, alternative
parameters have been derived, e.g., in Refs. [26,27]. While
the value of Sv is fairly consistent in all models, larger values
of κ are obtained in the latter approaches. The dotted (red)
line in Fig. 1 uses parameters of Ref. [27] (Sv = 27.3 MeV,
κ = 1.68) and provides a good description of the data both in
absolute magnitude as well as reproducing the A dependence
with the exception of 12C. An alternative parameter set (Sv =
24.1 MeV, κ = 0.545) discussed in Ref. [27] completely fails
to describe the data.

One can also perform a free fit to Eq. (4). The result
depends crucially on the inclusion (black solid line) or
exclusion (black dashed-dotted line) of the 12C data point. In
the former case, the results [Sv = 23.5(7) MeV, κ = 1.41(5),
χ2/dof = 5.7] are closer to Eq. (2). The latter analysis without
the 12C result provides a better fit to the data (χ2/dof = 1.3)
with parameters [Sv = 25.6(8) MeV, κ = 1.66(5)] similar to
those of Ref. [27]. These examples illustrate the importance
of studying the experimental systematics of σ−2 (i.e., the
polarizability) over a wide mass range. Despite the limitations
of the underlying approach neglecting structure effects one
can expect relevant information on the volume and surface
coefficients and thus the density dependence of the symmetry
energy.
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with ⌘2 ⇠ �(⌫̄). The result in Eq.(8) thus corresponds
to including subleading terms in the ⌘-expansion.

As a check of the model dependence, the above in-
tegral was evaluated with the form factor correspond-
ing to the homogeneously charged sphere distribution,
F (q) = 3J1(qR)/qR with R =

p
5/3Rch the radius of

the sphere. The di↵erence between the two never exceeds
1%.

The dipole polarizability is an external input for which
I use the empirical scaling formula obtained from a fit
from oxygen to lead [41, 42]

↵E1 =
0.0518MeV fm3A2

Sv(A1/3 � )
, (9)

with Sv = 27.3(8) MeV and  = 1.69(6). For lighter
elements I use the values from Ref. [43]. Since that
Ref. does not cover 14N I extrapolate it from the
measured polarizability of 12C assuming for simplicity
↵E1(14N) = ↵E1(12C)(14/12)5/3. Within the range of
validity of the fit of Eq.(9) (oxygen and above) the uncer-
tainty always stays well below 10%. To take into account
that individual polarizabilities may deviate from the fit
by more than 1�, I assign a conservative 10% uncertainty
on the normalization of ↵E1 in the entire range, and use
the central values Sv = 27.3 MeV and  = 1.69. The
value of the mean excitation energy ⌫̄ is also deduced
from the moments of the photoabsorption cross section
��n =

R
d⌫��(⌫)/⌫n for n = 0, 1, 2. I define

⌫̄ = ��1/��2. (10)

The values of ��n are taken from [43, 44]. In case the en-
try is missing, the value for the closest neighbor element
from [44] is adopted. Since ⌫̄N changes very little be-
tween nearby elements, the associated uncertainty does
not exceed 1-2%, well below other sources of uncertainty.

Eqs.(4),(8),(9),(10) represent the result at the leading
order in Z↵.

It is well known that even for low Z the next-to-leading
order corrections are non-negligible. The approximation
scheme underlying Eq.(1) assumes that (i) the atomic size
is much larger than the nuclear one, (Z↵mr)�1 � Rch;
(ii) nuclear excitations lie at energies ⌫N that are much
larger than atomic ones, ⌫N � (Z↵)2mr/2. To extend
the validity of the calculation, one should include the
higher-order corrections in the two specified expansion
parameters, ✏1 = Z↵mrRch and ✏2 = (Z↵)2mr/2⌫N .

The reduction factor FR accounts for the variation of
the atomic 1S-wave function squared ⇠ exp(�2Z↵mrr)
over the nucleus volume. The nuclear charge distri-
bution is taken for simplicity in the Gaussian form ⇠
exp(�3r2/2R2

ch). This gives

FR =

Z 1

0

r2dre�2Z↵mrr 3
p
6p

⇡R3

ch

e
� 3r2

2R2
ch , (11)

and it quantifies the corrections in the expansion param-
eter ✏1. This correction accounts for the spatial distribu-
tion of the probability for the nucleus to be polarized by

the orbiting muon. Since the strong interaction responsi-
ble for nuclear transitions is short-range, the muon should
be on top of the active nucleons. This correction applies
to both NP and nP. To estimate the uncertainty, I also
compute R using the homogeneous sphere distribution
corresponding to the same charge radius,

F 0
R =

Z Rsph

0

3r2dr

Rsph
3
e�2Z↵mrr, Rsph =

r
5

3
Rch (12)

To include higher orders in ✏2, I account for the
Coulomb distortion of the muon propagator inside the
loop, following Ref. [19] (see also details reported in
Ref. [40]). Coulomb interaction is described by the point
Coulomb radial Green’s function defined by


1

2mr

d2

dr2
� l(l + 1)

2mrr2
+

Z↵

r
+ E

�
gl(E, r, r0) = �(r � r0).

(13)
In the unretarded dipole approximation, the muon
Green’s function should be taken for l = 1 and for
E = �⌫N [19]. The task is reduced to the following
radial integral:

K = �
r

⌫N
2mr

1Z

0

dr

1Z

0

dr0�nS(r)
g1(�⌫N , r, r0)

rr0
�nS(r

0).

(14)
Such integrals have been evaluated in the general case
in the literature [45]. The integral at hand is a special
case of the integral K⌫�

µ1µ2
(p1, p2,!) defined in Eq.(5.1) of

Ref. [45]1. For the 1S states, the values of the parameters

should be chosen as µ1,2 = 0, � = 1, p1,2 = Z↵
2

q
2mr
⌫N

and

! =
p
2mr⌫N . Using the representation in terms of the

Gauss hypergeometric function in Eq. (5.7) of Ref. [45],
I find

K =
2

9

1

(1 + p)4

X

k=0

�(k + 4)

k!(2 + k � p)


2F1(2,�k; 4;

2

1 + p
)

�2
.

(15)

The sum can be performed analytically in a closed form
if the p-dependence under the sum is only kept in the
hypergeometric function. To proceed, I Taylor-expand
the denominator,

1

2 + k � p
=

1

2 + k

X

m=0

✓
p

2 + k

◆m

, (16)

which is justified because p =
p
✏2 < 1 in the approxima-

tion scheme used here. Each term in the expansion can be
evaluated analytically, e.g. using Mathematica. Denot-
ing with K(n) the result of wrapping the series in Eq.(16)

1 Note that Ref. [45] uses the definition g = �2mrg/rr0 with re-
spect to that used here.
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4.2. M O M E N T S  A N D  M E A N  ENERGIES 

The predictions of  the sum rules concern in general the values of  the moments 
~_~(0,E") of  the cross section ar, r (E  ). These moments are dcfined by 

~.~(0,/~) = E~a.,.T(E)dE. (l) 

TABLE 2 

The moments  of  the experimental nuclear cross section distributions integrated from 10 MeV to the 
energy ~, and their statistical errors 

t Z-2 Z-, Eo E~, Z+2 
(MeV) (mb/MeV) +(~,,) (rob) + ( ~ )  (mb. MeV) + ( ~ )  (b. MeV z) +(~o) (b "MeV~) +(~o) 

Li 100 0.196 1.1 4.64 1.0 143 1.7 5.82 3.1 305 5 
140 0.197 1.1 4.79 1.0 161 1.9 8.03 3.4 577 5 
210 0.198 1.1 5.03 1.0 206 2.0 16.60 3.7 2220 5 

Be 100 0.192 2.5 5.19 1.5 173 2.0 7.11 3.4 362 5 
140 0.194 2.5 5.33 1.5 189 2.1 9.09 3.6 600 6 
210 0.195 2.5 5.58 1.5 236 2.1 17.80 3.5 2240 5 

C 100 0.313 1.7 8.81 1.1 291 1.6 12.00 2.9 630 4 
140 0.316 1.7 9.18 1.2 334 2.2 17.10 5 1250 7 

O 100 0.580 1.6 14.50 1.3 432 2.0 16.00 4 748 8 
140 0.585 1.6 15.10 1.3 508 2.5 25.20 5 1880 8 

AI 100 1.10 1.8 25.70 1.5 739 2.6 27.9 5 1400 8 
140 1.11 1.8 26.3 1.7 807 3.9 36.4 9 2450 16 

Ca 100 2.22 1.2 45.5 1.5 1120 3.6 34.9 9 1430 18 
140 2.23 1.2 46.8 1.7 1290 4.6 56.6 I 1 3710 19 

From the cross sections given above only the contributions to this integral from 10 
MeV up to E, ,~__~(10, E), can be obtained. The values of  these contributions are dif- 
ferent from the moments defined in eq. (1) i fa  particle emission threshold lies below 
10 MeV and if this results in an appreciable contribution ~,~(0, 10) to the moments 
below 10 MeV. This is the case for Li [ref. 12)] and Be [ref. 13)'] especially for ~, = - 1 
and - 2 .  The experimental values of  the moments are given for ~ = 0, + I and +2  
in table 2. The errors of  these values also given in table 2 have been calculated using 
counting statistics alone. 

5. D i scus s ion  

There is no theory which predicts total photonuclear cross sections in the whole 
energy range covered by this experiment. Usually this entire range is subdivided into 
two regions called the "giant dipole resonance region" and the region "above the 
giant dipole resonance" or "at  intermediate energies". Theories have been developed 
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],

�En` =
8↵2m

i⇡
|�n`(0)|2 (1)

⇥
Z

d4q
(q2 � ⌫2)T2 � (q2 + 2⌫2)T1

q4(q4 � 4m2⌫2)

with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1

4M
F1(⌫, q

2)

ImT2(⌫, q
2) =

1

4⌫
F2(⌫, q

2). (2)

The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]

⇥
�Ehadr

2S

⇤
µD

= �28(2)µeV. (3)

The respective contribution to the nS level in a muonic
atom µA will then read as

⇥
�EnP

nS

⇤
µA

= �28(2)µeV
|�µA

nS (0)|2

|�µD
2S (0)|2

A

2
. (4)

Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,

�ENP
nS = �8↵2|�nS(0)|2

Z 1

0

dq

q2

Z 1

0

d⌫SL(⌫,q)

⌫ + q2/2m
, (5)

where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
��(⌫)

4⇡2↵⌫
F 2(q), (6)

with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,

↵E1 =
1

2⇡2

Z
d⌫

⌫2
��(⌫). (7)

The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at

�ENP

nS = �2⇡↵|�nS(0)|2↵E1

p
2m⌫̄ e�

2
(⌫̄)Erfc(�(⌫̄)),

(8)

with �(x) = 2mxR2

ch
/3, Rch standing for the respective

nuclear charge radius, and Erfc is the complementary er-
ror function. Ref. [40] represents NP as an “⌘-expansion”
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from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],
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WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
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The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],
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with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1
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F1(⌫, q

2)
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2) =
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The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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The respective contribution to the nS level in a muonic
atom µA will then read as
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
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F 2(q), (6)

with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,
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The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],
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with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
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F1(⌫, q

2)

ImT2(⌫, q
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The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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nuclear range. The electric dipole polarizability is given
by its �2 moment,
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The nuclear form factor is taken in Gaussian form F (q) =
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ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
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Correc5ons	in	 :	keep	Coulomb	energy	in	the	Green’s	func5onϵ2

16 N UC LEAR POLARIZATION CORRECTION S IN p- He ATOMS

state energies can be achieved using the unretarded
dipole approximation, which has been somemhat
useful in calculating dispersion corrections for
lom-energy electron scattering. "" Keeping only
first-order Coulomb distortion effects me mill find
for S states

&E,"= ~u —I y(0)l'[o, g. +go~2p, (o', +ac, )],
where

g ), —= (d 0'~b3 (d dh) y

th

0' ), = (d EF~b3 43 ln +A 2p. (d d4P ~

th

[These are Eqs. (26a) and (26c) of Sec. III.] In this
expression p. is the muon-nucleus reduced mass,
y(0) is the muon wave function at the nucleus,
o~&»(~) is the total photoabsorption cross section
of a nucleus for a photon mith energy ~, g is the
proton number, and a is a state-dependent con-
stant. Since g, is essentially proportional to ~~
and p,~, is a closely related quantity, observation
(2) above is confirmed. Both quantities may be
deduced from recent experiments. "'" This equa-
tion is one of our primary results; note that no
cutoff is needed. More accurate numerical results
than those given by Eq. (26) will be obtained by re-
laxing the unretarded approximation and will con-
firm the results of Hinker' and Bernabeu and Jarls-
kog s

II. GENERAL FORMALISM

Our primary assumptions in this work will be:
the nonrelativistic treatment of both the muon and
nucleus, and the ignoring of all but the static Cou-
lomb interaction between the tmo systems. The
first step" is to separate the Coulomb interaction
into a piece Ho mhich is elastic mith respect to the
nucleus and a piece ~, which generates only nu-
clear transitions. The first piece is treated to all
orders by including it as part of the unperturbed
lepton Hamiltonian, and it generates the usual
static hydrogenic spectrum modified by the nuclear
charge distribution plus recoil corrections. " The
second piece ~, generates nuclear transitions and
is treated perturbatively; it contributes to the en-
ergy in second- and higher-order perturbation the-
ory. Because both the nuclear finite size and the
nuclear polarization generate small corrections, it
is sufficient to restrict ourselves to a second-
order treatment of ~, and to ignore the nuclear
finite size while doing so. With these assumptions
the polarization correction in the lepton-nucleus

center-of-mass frame becomes

gE, = Q &0 I ~.l pr &
N~0

~E = g &o'
I ~, I

hl'& G(-E„)&~l nH, I
o'& . (2)

N ~0

A more useful form may be obtained by noting that
the nuclear matrix element &Nl ~, I 0) is just the
lepton transition potential 6 V„(r), where r is the
vector from the nuclear center of mass to the
lepton. This leads to

aZp= ~ a~N r t"c -F.Nir, r' ZVN r' (3)

in an obvious notation which emphasizes the lepton
coordinate. We wish to evaluate ~F~ for four spec-
ial cases: (a) ignore the Coulomb attraction in the
lepton states and use the nonrelativistic equivalent
of the nuclear model of Bernabeu and Jarlskog
(denoted BJ); (b) ignore Coulomb effects and use
dipole nuclear states only; (c) ignore Coulomb ef-
fects and use the umeIa~ded dipole approximation;
(d) work in the unretarded dipole approximation
and include first-order Coulomb distortion effects.
We begin our discussion by ignoring Coulomb

effects in the Green's function G„. in this limit G,
is essentially the nonrelativistic free Green's
function for complex momentum. We find that G,
-G.= -v, exp(-~„l r —r' I)/2vl r —r' I, where K„
—= (2p,E„)' . The first observation is that y„ is a
number which varies roughly from —,'--," over the
region of the intermediate nuclear spectrum which
can be expected to dominate the polarization cor-
rections; furthermore, the exponential is small
unless r and r' are «&g&~p equal. Clearly the
latter situation becomes a better and better ap-
proximation as FN increases. Therefore, as a
rough approximation we may write G, -=X5'(r- r')
and, integrating with respect to r, we find X = -1/
E„Substitutin. g this result into Eq. (3), we ob-

&ÃI ~II. I o &, (1)
- n &O &n

where we have labeled by I N& each internal nuclear
state mhich has energy ~N mith respect to the nu-
clear ground state, and by I n& each lepton state in
the center of mass which has an energy g„. In ad-
dition, I

0'& is simultaneously the ground state of
the nucleus I 0) and the unperturbed atomic state
I i &, which we denote by p(r) in coordinate space;
the latter state has an energy eo. We have written
the lepton intermediate state I n& in a way that em-
phasizes that the bracket contains the Coulomb
Green's function. "" Defining E„=sr„—eo (&0),
the Green's function is denoted G(-E„) and we may
rewrite Eq. (1) in the form

Obtained	via	radial	integral	with	Coulomb	GF	and	atomic	WF
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with ⌘2 ⇠ �(⌫̄). The result in Eq.(8) thus corresponds
to including subleading terms in the ⌘-expansion.

As a check of the model dependence, the above in-
tegral was evaluated with the form factor correspond-
ing to the homogeneously charged sphere distribution,
F (q) = 3J1(qR)/qR with R =

p
5/3Rch the radius of

the sphere. The di↵erence between the two never exceeds
1%.

The dipole polarizability is an external input for which
I use the empirical scaling formula obtained from a fit
from oxygen to lead [41, 42]

↵E1 =
0.0518MeV fm3A2

Sv(A1/3 � )
, (9)

with Sv = 27.3(8) MeV and  = 1.69(6). For lighter
elements I use the values from Ref. [43]. Since that
Ref. does not cover 14N I extrapolate it from the
measured polarizability of 12C assuming for simplicity
↵E1(14N) = ↵E1(12C)(14/12)5/3. Within the range of
validity of the fit of Eq.(9) (oxygen and above) the uncer-
tainty always stays well below 10%. To take into account
that individual polarizabilities may deviate from the fit
by more than 1�, I assign a conservative 10% uncertainty
on the normalization of ↵E1 in the entire range, and use
the central values Sv = 27.3 MeV and  = 1.69. The
value of the mean excitation energy ⌫̄ is also deduced
from the moments of the photoabsorption cross section
��n =

R
d⌫��(⌫)/⌫n for n = 0, 1, 2. I define

⌫̄ = ��1/��2. (10)

The values of ��n are taken from [43, 44]. In case the en-
try is missing, the value for the closest neighbor element
from [44] is adopted. Since ⌫̄N changes very little be-
tween nearby elements, the associated uncertainty does
not exceed 1-2%, well below other sources of uncertainty.

Eqs.(4),(8),(9),(10) represent the result at the leading
order in Z↵.

It is well known that even for low Z the next-to-leading
order corrections are non-negligible. The approximation
scheme underlying Eq.(1) assumes that (i) the atomic size
is much larger than the nuclear one, (Z↵mr)�1 � Rch;
(ii) nuclear excitations lie at energies ⌫N that are much
larger than atomic ones, ⌫N � (Z↵)2mr/2. To extend
the validity of the calculation, one should include the
higher-order corrections in the two specified expansion
parameters, ✏1 = Z↵mrRch and ✏2 = (Z↵)2mr/2⌫N .

The reduction factor FR accounts for the variation of
the atomic 1S-wave function squared ⇠ exp(�2Z↵mrr)
over the nucleus volume. The nuclear charge distri-
bution is taken for simplicity in the Gaussian form ⇠
exp(�3r2/2R2

ch). This gives

FR =

Z 1

0

r2dre�2Z↵mrr 3
p
6p

⇡R3

ch

e
� 3r2

2R2
ch , (11)

and it quantifies the corrections in the expansion param-
eter ✏1. This correction accounts for the spatial distribu-
tion of the probability for the nucleus to be polarized by

the orbiting muon. Since the strong interaction responsi-
ble for nuclear transitions is short-range, the muon should
be on top of the active nucleons. This correction applies
to both NP and nP. To estimate the uncertainty, I also
compute R using the homogeneous sphere distribution
corresponding to the same charge radius,

F 0
R =

Z Rsph

0

3r2dr

Rsph
3
e�2Z↵mrr, Rsph =

r
5

3
Rch (12)

To include higher orders in ✏2, I account for the
Coulomb distortion of the muon propagator inside the
loop, following Ref. [19] (see also details reported in
Ref. [40]). Coulomb interaction is described by the point
Coulomb radial Green’s function defined by


1

2mr

d2

dr2
� l(l + 1)

2mrr2
+

Z↵

r
+ E

�
gl(E, r, r0) = �(r � r0).

(13)
In the unretarded dipole approximation, the muon
Green’s function should be taken for l = 1 and for
E = �⌫N [19]. The task is reduced to the following
radial integral:

K = �
r

⌫N
2mr

1Z

0

dr

1Z

0

dr0�nS(r)
g1(�⌫N , r, r0)

rr0
�nS(r

0).

(14)
Such integrals have been evaluated in the general case
in the literature [45]. The integral at hand is a special
case of the integral K⌫�

µ1µ2
(p1, p2,!) defined in Eq.(5.1) of

Ref. [45]1. For the 1S states, the values of the parameters

should be chosen as µ1,2 = 0, � = 1, p1,2 = Z↵
2

q
2mr
⌫N

and

! =
p
2mr⌫N . Using the representation in terms of the

Gauss hypergeometric function in Eq. (5.7) of Ref. [45],
I find

K =
2

9

1

(1 + p)4

X

k=0

�(k + 4)

k!(2 + k � p)


2F1(2,�k; 4;

2

1 + p
)

�2
.

(15)

The sum can be performed analytically in a closed form
if the p-dependence under the sum is only kept in the
hypergeometric function. To proceed, I Taylor-expand
the denominator,

1

2 + k � p
=

1

2 + k

X

m=0

✓
p

2 + k

◆m

, (16)

which is justified because p =
p
✏2 < 1 in the approxima-

tion scheme used here. Each term in the expansion can be
evaluated analytically, e.g. using Mathematica. Denot-
ing with K(n) the result of wrapping the series in Eq.(16)

1 Note that Ref. [45] uses the definition g = �2mrg/rr0 with re-
spect to that used here.

*New	closed-form	expressions	for	Coulomb	distor5on	correc5ons	obtained



Nuclear polarization - beyond leading approximation4

at the power pn (i.e., K(n) = · · ·
Pn

m=0

pm

(2+k)m+1 . . . ) and
introducing a shorthand for the often recurring combina-
tion, ⇠ = p�1

p+1
, I find

K(0) = 1 + 2p ln(1 + ⇠)� p2

Li2 (�⇠) +

⇡2

12

�
, (17)

K(1) = 1 + 2p ln(1� ⇠2)� p+ p2
�
1� 2Li2

�
⇠2
��

(18)

+ p3

Li3 (⇠)�

3

2
Li3

�
⇠2
�
+ ln(1 + ⇠)� ⇣(3)

2

�
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K(2) = 1 + 2p ln(1� ⇠2)� p+ p2
⇥
1� 2Li2(⇠

2)
⇤

(19)

+ p3

Li3(⇠)�
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2
Li3(⇠

2) + ln(1 + ⇠) +
⇣(3)

2
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+ p4

Li4(⇠)�

1

2
Li4(⇠

2)� Li2 (�⇠)� ⇡2

12
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180

�

with Lin denoting the polylogarithm and ⇣ the Riemann
zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)

in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(

p
✏2) for the central value and half the dif-

ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.
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FIG. 1. Radial Coulomb integrals K(0) (red dashed curve),
K(1) (solid black curve), and K(2) (dotted green curve) in
comparison with the leading-logarithm approximation (solid
blue curve).

This brings me to the final expression that can be used

for numerical estimates:

�ETOT

nS = �ENP

nS FR(✏1)K
(1)(

p
✏2)

+�EnP

nS FR(✏1)K
(1)(

p
✏n
2
), (21)

with �ENP
nS as given in Eq.(8), �EnP

nS as given in Eq.(4),
FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n

2
= (Z↵)2mr/2⌫n

with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
reduction factor FR, conservatively estimated as 100%
di↵erence between Eqs.(11) and (12); (iii) uncertainty on
the Coulomb correction obtained as half the di↵erence
of Eqs.(18) and (17). For nP, the uncertainty results by
combining the latter two uncertainties with the 10% on
the input in Eq.(3). For the total, I add the individual
uncertainties in quadrature.
The results of the calculation along with the respec-

tive entries in Ref. [7] are shown in Tabs.I,II. Generally,
a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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at the power pn (i.e., K(n) = · · ·
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, I find
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with Lin denoting the polylogarithm and ⇣ the Riemann
zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)

in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(

p
✏2) for the central value and half the dif-

ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.
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FIG. 1. Radial Coulomb integrals K(0) (red dashed curve),
K(1) (solid black curve), and K(2) (dotted green curve) in
comparison with the leading-logarithm approximation (solid
blue curve).

This brings me to the final expression that can be used

for numerical estimates:
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with �ENP
nS as given in Eq.(8), �EnP

nS as given in Eq.(4),
FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n

2
= (Z↵)2mr/2⌫n

with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
reduction factor FR, conservatively estimated as 100%
di↵erence between Eqs.(11) and (12); (iii) uncertainty on
the Coulomb correction obtained as half the di↵erence
of Eqs.(18) and (17). For nP, the uncertainty results by
combining the latter two uncertainties with the 10% on
the input in Eq.(3). For the total, I add the individual
uncertainties in quadrature.
The results of the calculation along with the respec-

tive entries in Ref. [7] are shown in Tabs.I,II. Generally,
a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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with Lin denoting the polylogarithm and ⇣ the Riemann
zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)

in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(

p
✏2) for the central value and half the dif-

ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.
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FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n
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with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
reduction factor FR, conservatively estimated as 100%
di↵erence between Eqs.(11) and (12); (iii) uncertainty on
the Coulomb correction obtained as half the di↵erence
of Eqs.(18) and (17). For nP, the uncertainty results by
combining the latter two uncertainties with the 10% on
the input in Eq.(3). For the total, I add the individual
uncertainties in quadrature.
The results of the calculation along with the respec-

tive entries in Ref. [7] are shown in Tabs.I,II. Generally,
a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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All	ingredients	have	simple	parametriza5on	in	terms	of	few	input	parameters	

Easy	to	use	and	reproduce!	Evaluate	and	compare	to	entries	in	Fricke,	Heilig	(used	to	extract	radii)

Rinker,	Speth	1978:	

NUCLEAR POLARIZATION (II) 399 

these factors may be removed from the sums, so that dE a may be written in terms of 
eq. (4): 

g2B2k2Z(r2k-2}[Z(E~'-lZ(a)'\-2 -LN /E(b)--E~)}~2J. (5) AE~- 2M --N,/~=O--A'\ N = 

For  the muon is state in Pb, k ,~ 1, and the factors outside the brackets work out 
to be 0.27 MeV 3. If we take the average isoscalar and isovector excitation energies 
to be 14 and 28 MeV, respectively, the result is AEls.L= o '~ 0.75 keV. Numerical 
calculations show that this restricted sum, in which excited intermediate muon 
states are neglected, contributes about half to the total for L = 0, so that we should 
expect about 1.5 keV for the total ls monopole shift in Pb. This is in reasonable 
agreement with more detailed calculations 2.7). It has often been suggested in the 
past 8) from fits to experimental dhta that the monopole shift should be much larger, 
perhaps 4 or 5 keV. From eq. (5) we see that the average isoscalar and isovector 
energies would have to be lowered by almost a factor of 2 to produce such a large 
shift. This seems quite unreasonable in view of the fact that 2hco ~ 17 MeV single- 
particle excitations are required to produce monopole states. A residual nucleon- 
nucleon force which is strong enough to lower the isoscalar states to, e.g. 8 MeV 
would push the isovector resonances to such high energies that their effect on the 
N P  correction would be almost negligible. Thus if our overall microscopic picture 
of giant resonances is valid, it would be difficult to obtain even as much as 3 keV 
for this shift. One may instead question the EWSR, since significant modifications 
may be produced by momentum- and isospin-dependent nuclear forces. It is clear 
that very large modifications would be required at relatively low energies in order 
to change the N P  shifts by factors of 2 to 3, but so far there is no evidence to support 
such a conjecture 5.6). 

The above estimate exhibits all of the major issues which enter the problem. Nuclear 
matrix elements of  specified coordinate operators arise as in eq. (2), and sums of  
these matrix elements with specified energy weights give the shifts as in eq. (3). 
In the general case, two different muon wave functions and other multipole operators 
may appear in eq. (2), and muon excitation energies are added to the denominators 
of eq. (3). Thus a different form factor and energy denominator is associated with 
each muon excitation. If only a few intermediate muon states contributed, one might 
attempt to work out eqs. (2) and (3) explicitly for each of these to obtain a quantitative 
result; however, it is now well established that the muon continuum contributes 
importantly and must be summed carefully 7). Thus, there arises in the overall sum 
a complicated energy dependence in both numerator and denominator, so that such 
an explicit approach is impractical at present. Rather, we prefer to construct a nuclear 
model which satisfies related sums as much as possible, and use this model to calculate 
the resulting energy shifts. Given any such model, these energy shifts may be calculated 
without significant further approximation or error using established techniques 
[refs. x. 2, 7)]. 

Energy-weighted	(TRK)	sum	rule	to	normalize		

Polarizability	~	inverse	energy	sum	rule	—>	enhanced	sensi5vity	to	low-lying	states	(PDR)	

Long-range	part	of	the	induced	dipole	poten5al	 	taken	between	atomic	WF	

Already	noted	in	Ericson,	Hüfner	1972

∼ αE1/r4

31
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TABLE I. Nuclear and nucleon polarization contributions to the 2p3/2-1s1/2 transition in muonic atoms in units of eV, in

comparison with the respective entries in Ref. [7]. The three uncertainties refer to the polarizability, FR and K(3), respectively.
NP to 2p states is ignored as it is much smaller than the uncertainty. Last column shows the experimental precision in Ref. [7].

Z�Element A ��ENP
1S ��EnP

1S Total NP Entry in [7] �exp

4�Be 9 0.44(4)(0)(0) 0.063(6)(0)(0) 0.50(4) 1.0(3) 10

5�B 10 0.99(10)(0)(1) 0.13(1)(0)(0) 1.12(10) 1.0(3) 7

6�C 12 2.1(2)(0)(0) 0.27(3)(0)(0) 2.4(2) 2.5(7) 0.5

7�N 14 3.8(4)(0)(1) 0.48(5)(0)(0) 4.3(4) 3.0(9) 5

8�O 16 7.8(0.8)(0.1)(0.1) 0.79(8)(1)(1) 8.6(8) 5.0(1.5) 4

9�F 19 11.9(1.2)(0.1)(0.2) 1.28(13)(1)(1) 13.2(1.2) 9.0(2.7) 2

10�Ne 20 15.7(1.6)(0.2)(0.3) 1.78(18)(2)(1) 17.5(1.6) 19(6) 5

21 17.0(1.7)(0.2)(0.4) 1.88(19)(2)(1) 19(2) 18(5) 4

22 18.0(1.8)(0.2)(0.4) 1.98(20)(2)(1) 20(2) 18(5) 4

11�Na 23 23.3(2.3)(0.3)(0.6) 2.64(26)(4)(1) 26(3) 25(8) 2

12�Mg 24 30.0(3.0)(0.5)(0.8) 3.46(35)(6)(2) 33(3) 38(11) 2

25 31.3(3.1)(0.5)(0.8) 3.61(36)(6)(2) 35(3) 31(9) 3

26 32.3(3.2)(0.5)(0.9) 3.75(38)(6)(2) 36(3) 33(10) 3

13�Al 27 42.2(4.2)(0.8)(1.2) 4.80(48)(9)(3) 48(5) 40(12) 2

14�Si 28 51.5(5.2)(1.1)(1.5) 5.99(60)(12)(4) 58(6) 55(16) 5

29 53.9(5.4)(1.1)(1.6) 6.21(62)(13)(4) 60(6) 53(16) 45

30 56.1(5.6)(1.2)(1.6) 6.42(64)(13)(4) 63(6) 51(15) 45

15�P 31 67.5(6.8)(1.6)(2.1) 7.86(79)(18)(6) 76(7) 61(18) 11

16�S 32 79.7(8.0)(2.0)(2.6) 9.48(95)(24)(7) 89(9) 83(25) 12

34 85.6(8.6)(2.2)(2.8) 10.1(1.0)(0.3)(0.1) 97(9) 79(24) 14

36 91.8(9.2)(2.4)(3.0) 10.6(1.1)(0.3)(0.1) 102(10) 75(23) 13

17�Cl 35 98.5(9.9)(2.9)(3.4) 11.9(1.2)(0.3)(0.1) 110(11) - -

37 106(11)(3)(4) 12.6(1.3)(0.4)(0.1) 119(12) - -

18�Ar 36 116(12)(4)(4) 14(1.4)(0.4)(0.1) 130(12) 118(36) 24

38 124(12)(4)(5) 15(1.5)(0.5)(0.1) 139(14) 107(32) 24

40 132(13)(4)(5) 16(1.6)(0.5)(0.1) 148(15) 126(38) 25

19�K 39 141(14)(5)(5) 18(1.8)(0.6)(0.2) 159(16) 119(36) 32

41 150(15)(5)(6) 18(1.8)(0.6)(0.2) 168(17) 132(40) 28

20�Ca 40 160(16)(6)(6) 20(2.0)(0.7)(0.2) 181(18) 142(40) 25

42 170(17)(6)(7) 21(2.1)(0.8)(0.2) 191(19) 166(50) 29

43 176(18)(7)(7) 21(2.1)(0.8)(0.2) 198(20) 145(43) 27

44 180(18)(7)(7) 22(2.2)(0.8)(0.2) 203(21) 175(52) 26

46 193(19)(7)(8) 23(2.3)(0.8)(0.2) 216(22) 156(47) 107

48 206(21)(8)(8) 24(2.4)(0.9)(0.2) 230(24) 153(46) 26

21�Sc 45 203(20)(8)(9) 25(2.5)(1.0)(0.2) 230(24) 203(61) 41

22�Ti 46 226(23)(10)(10) 28(2.8)(1.2)(0.3) 256(27) 257(77) 26

47 230(23)(10)(11) 29(2.9)(1.2)(0.3) 259(27) 252(76) 25

48 237(24)(10)(11) 29(2.9)(1.3)(0.3) 266(28) 241(72) 26

49 246(25)(11)(11) 30(3.0)(1.3)(0.3) 276(29) 215(64) 33

50 253(25)(11)(11) 31(3.1)(1.3)(0.3) 284(30) 216(65) 26

23�V 51 276(28)(13)(13) 35(3.5)(1.6)(0.4) 319(33) 245(73) 26

24�Cr 50 286(29)(14)(14) 37(4)(2)(1) 323(35) 333(100) 27

52 304(30)(15)(15) 39(4)(2)(1) 343(37) 299(90) 21

53 310(31)(15)(15) 39(4)(2)(1) 349(38) 302(91) 25

54 316(32)(16)(15) 40(4)(2)(1) 356(39) 318(96) 31

25�Mn 55 351(35)(19)(17) 44(4)(2)(1) 395(44) 364(109) 34

Uncertain5es:	

Polarizability	10%	

FR	(Gauss	vs	hard	sphere)	

Coulomb	distor5on		
(higher	orders	in	 )ϵ2

Good-ish	agreement	with	F&H	

For	light	elements	

Should	not	be	taken	for	granted!	

Approaches	are	different

Nucleon	polariza5on	non	negligible	

From	Ca	on	exceeds	exp.	precision
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TABLE II. Same as in Table I

Z�Element A ��ENP
1S ��EnP

1S Total NP Entry in [7] Goal

26�Fe 54 371(37)(21)(19) 48(5)(3)(1) 419(47) 362(109) 48

56 384(38)(22)(20) 49(5)(3)(1) 433(49) 403(121) 44

57 391(39)(22)(20) 50(5)(3)(1) 441(50) 390(117) 56

58 397(40)(23)(20) 50(5)(3)(1) 447(50) 400(120) 54

27�Co 59 433(43)(26)(23) 56(6)(4)(2) 489(56) 438(131) 50

28�Ni 58 459(46)(29)(25) 59(6)(4)(1) 518(60) 437(131) 46

60 467(47)(30)(25) 61(6)(4)(1) 528(61) 461(138) 45

61 476(48)(30)(26) 62(6)(4)(1) 538(63) 426(138) 54

62 484(48)(31)(26) 62(6)(4)(1) 546(64) 458(138) 45

64 502(50)(33)(27) 64(6)(4)(1) 566(66) 438(138) 49

29�Cu 63 506(51)(35)(29) 68(7)(5)(1) 574(68) 538(161) 47

65 530(53)(36)(30) 70(7)(5)(1) 600(71) 489(147) 49

30�Zn 64 545(54)(39)(32) 73(7)(5)(1) 618(75) 609(183) 47

66 565(56)(41)(33) 75(8)(5)(1) 640(78) 595(179) 45

68 585(59)(43)(34) 77(8)(6)(1) 662(81) 581(174) 32

70 606(61)(45)(35) 79(8)(6)(1) 685(84) 615(184) 131

31�Ga 69 616(62)(48)(37) 83(8)(6)(1) 699(87) 567(169) 12

71 647(65)(50)(38) 86(9)(7)(1) 733(91) 551(165) 12

32�Ge 70 662(66)(54)(40) 89(9)(7)(1) 751(95) 706(212) 16

72 671(67)(55)(42) 92(9)(8)(1) 763(97) 738(221) 12

73 683(68)(56)(42) 93(9)(8)(1) 776(99) 700(210) 24

74 694(69)(57)(43) 94(9)(8)(1) 788(101) 839(242) 17

76 719(72)(60)(44) 96(10)(8)(1) 815(104) 819(246) 15

33�As 75 737(74)(64)(47) 101(10)(9)(2) 838(109) 761(228) 10

34�Se 76 775(78)(71)(50) 107(11)(10)(2) 882(117) 1036(311) 16

77 790(79)(72)(51) 109(11)(10)(2) 899(119) 790(237) 16

78 805(80)(74)(52) 110(11)(10)(2) 915(122) 949(285) 13

80 835(83)(76)(54) 113(11)(10)(2) 948(126) 872(262) 12

82 865(87)(79)(56) 116(12)(11)(2) 981(133) 814(244) 19

35�Br 79 850(85)(81)(56) 117(12)(11)(2) 967(131) 933(280) 17

81 883(88)(84)(58) 120(12)(11)(2) 105(136) 827(248) 20

36�Kr 78 858(86)(86)(57) 121(12)(12)(2) 979(136) 1183(355) 40

80 892(89)(90)(59) 124(12)(12)(2) 1016(141) 1071(321) 40

82 927(93)(93)(62) 128(13)(13)(2) 1055(146) 938(281) 40

83 946(95)(95)(63) 129(13)(13)(2) 1075(149) 936(281) 47

84 962(96)(96)(64) 131(13)(13)(2) 1093(152) 838(251) 39

86 997(100)(100)(67) 134(13)(13)(2) 1133(157) 866(260) 34

37�Rb 85 1014(101)(106)(69) 139(14)(14)(2) 1151(163) 853(256) 10

87 1051(105)(109)(71) 142(14)(15)(2) 1193(169) 807(242) 14

38�Sr 84 1034(103)(112)(71) 145(14)(16)(3) 1179(169) 1136(341) 24

86 1061(106)(115)(73) 147(15)(16)(3) 1208(174) 929(279) 11

87 1082(108)(118)(75) 149(15)(16)(3) 1231(178) 843(253) 49

88 1101(110)(120)(76) 151(15)(16)(3) 1252(181) 937(281) 8

39�Y 89 1165(116)(132)(81) 158(16)(18)(3) 1323(195) 867(260) 9

40�Zr 90 1218(122)(143)(86) 166(17)(20)(3) 1384(208) 975(292) 10

91 1198(120)(142)(86) 167(17)(20)(3) 1365(206) 957(287) 33

92 1212(121)(144)(87) 169(17)(20)(3) 1381(209) 984(295) 13

94 1237(124)(148)(89) 171(17)(20)(3) 1408(214) 946(284) 15

96 1266(127)(153)(91) 174(17)(21)(3) 1440(220) 966(293) 36

41�Nb 93 1264(126)(156)(92) 177(18)(20)(3) 1441(223) 1127(338) 16

Agreement	deteriorates	for	larger	Z

SYSTEMATICS OF NUCLEAR CHARGE DISTRiBUTIONS IN. .

the formula

a =0.03661+(1.4194 & 10 ')Z.
Kith the value of n thus determined, the param-
eters A, 8, and k of Eg. (2) were fitted using a
two-parameter Fermi charge distribution with
(=4aln3 fixed at 2.3 fm. The fit of Ref. 1 was
done with a weighting function of r p(r) which
emphasizes the nuclear surface region where the
charge distribution differences are largest.
Table VII lists for our data the values of n and

k and the equivalent radii R, calculated using Eq.
(3). The errors in R~ are derived by multiplying
the experimental error by C~ =—dR~/dE. The
error in these radii due to uncertainties in the
higher-order corrections has been discussed in
Sec. m.
To verify that the quoted R~ are independent of

the charge model, the analysis was also performed
using Hartree-Fock charge distributions in which
the radial scale factor was adjusted to fit the ex-
perimental energies. The resulting equivalent
radii were the same as those obtained with the
two-parameter charge distribution to within ap-
proximately 0.2 mfm (10 eV).
The isotope and isotone shifts 5R„listed in Table

VIII were calculated by taking the difference of the
appropriate R~ values. The errors of the 5R, were
computed from the experimental errors of the
energy differences (Table IV) by using the sen-
sitivity factors given in column 9 of Table VII. The

problem of comparing slightly different param-
eters of the charge distribution, which arises in
the case of the isotone shifts, was investigated
by using a common a and 0 for all nuclei. Kith
n = 0.076 fm ' and k = 2.123 (the values given by
Engfer' for ' Ni), the isotope differences were
found to be the same within 0.1 mfm. The DR~ for
the isotones increased 0.5 mfm for isotones differ-
ing by one proton and 1 mfm for isotones differing
by two protons. Since these changes are only of
the order of the experimental error, we have
chosen to list the "model-independent" values of
5R~.
It is not unusual for the results of theoretical

calculations of the nuclear charge distribution to
be quoted in terms of an rms charge radius. For
this reason we also list in Table VII values of
(r ')'~', using a. two-parameter Fermi distribu-
tion. It should be kept in mind, however, that such
values are not independent of the charge model
used.

VII. INTERPRETATION AND CONCLUSIONS

The aim of this experiment has been the sys-
tematic study of isotope and isotone shifts in the
region near the Z =28 closed shell. A graphical
summary of the results is shown in Figs. 5 and V.
In these two figures the shifts between even-A
nuclei are shown separately from the odd-even
shifts since the physical interpretation is different
in these two cases.

TABLE VII. Experimental equivalent radii, interpreted from the "combined" 2p3~&- 1s&~2 transition energies. Fits
were made using two-parameter Fermi function charge distributions, with C as given and a fixed at 0.55 fm. Estimat-
ed errors in the equivalent radii R& do not include theoretical uncertainties.

Isotope

Experimental
ener~
(keV)

Nuclear
polarization All other
corrections ~ corrections ~

(keV) (keV)

54Fe
56Fe
"Fe
58Fe
"Co
58Ni
60Ni

62Ni
"Ni
"Cu
"Cu
64Zn
66Zn
68Zn
70Zn

1260.011(45)
1257.054 (42)
1255.921(51)
1254.485 (49)
1341.461(46)
1432.564 (44)
1429.369(43)
1428.393(49)
1426.829(43)
1425.229 (46)
1514.433 (44)
1512.516(45)
1602.718 (44)
1600,544 (43)
1598.763 (44)
1596.898 (109)

0.546
0.582
0.600
0.624
0.588
0.689
0.693
0.632
0.703
0.725
0.739
0.749
0.857
0.909
0.917
0.973

9.768
9.718
9.701
9.678
10.382
11,134
11.083
11.068
11.042
11.015
11.724
11.693
12,401
12.367
12.337
12.306

3.98097
4.04735
4.07296
4.10513
4.12450
4.10687
4.16295
4.17918
4.20767
4.23639
4.26910
4.29959
4.33742
4.36910
4.39462
4.42190

3.700
3.743
3.759
3.780
3.793
3.781
3.818
3.829
3.847
3.866
3.888
3.908
3.933
3.954
3.971
3.989

0.074
0.074
0.074
0.074
0.075
0.076
0.076
0.076
0.076
0.076
0.078
0.078
0.079
0.079
0.079
0.079

2.121
2.121
2.121
2.121
2.121
2.123
2.123
2.123
2.123
2.123
2.12V
2.127
2.130
2.130
2.130
2.130

-18.1
-18.1
-18.1
-18.1
-16.2
-14.5
-14.5
-14.5
-14.5
-14.5
-13.1
-13.1
-11.g
-11.9
-11.9
-11.9

4.7387(8)
4.7941(8)
4.8155(9)
4.8425(9)
4.8581(7)
4.8428 (6)
4.8900 (6)
4.9037(7)
4.9278 (6)
4.9521(7)
4.9789(6}
5.0048 (7)
5.0366(5)
5.0637(5)
5.0855(5)
5.1088(13)

' Itemized in Table I for selected nuclei.

But	keep	in	mind	es5mates		

included	in	Shera	et	al,	1976

If	disagree	with	older	calcula5ons		

—	also	extracted	radii	disagree	

How	robust	is	the	uncertainty?



Conclusions 
Status & Outlook

Presumably	a	quote	by	Wolfgang	Pauli:		

Nothing	is	worse	than	a	wrong	theory	describing	data



• Nuclear	charge	radii:	crucial	input	to	SM	tests	and	BSM	searches	at	low	energies	

• Cabibbo	(CKM)	unitarity	and	Vud:	nuclear	correc5ons	current	borleneck	-	use	Rch	as	input	

• 	Nuclear	charge	radii	rely	on	very	precise	experiments	—	is	theory	up	to	the	task?	

• Leap	in	exp.	precision:	MuX,	QUARTET,	MUSEUM,	RefRad	(µ	atoms)	

• Nuclear	polariza5on	crucial	to	extrac5on	of	Rch	from	atomic	transi5ons	

• Are	uncertain5es	of	NP	firmly	under	control?		

• Personal	wish:	an	open-source	nuclear	polariza5on	(formula,	parametriza5on,	code)	

• NP	is	related	to	dispersion	correc5ons	in	e-scarering	and	to	NS	correc5on	in	 -decay	

• Look	for	a	uniform	treatment	of	all	of	these	

• What	is	the	path	to	these	goals?	

• Ab-ini5o	methods	are	hot	right	now:	(poten5ally)	very	accurate	and	systema5cally	

improvable	—	are	not	easy	to	understand	and	are	very	expensive	computa5onally;		

viable	recipe	for	nuclear	radii	tables?	—	no	single	ab-ini5o	method	covers	full	nuclear	chart	

• Generally,	µ	atoms	difficult:		nuclear	and	atomic	scales	are	not	well	separated!		

full-blown	ab-ini5o	nuclear	calcula5on	per	se	is	not	enough	to	guarantee	precision

β


