A nuclear research institute reshaping the future based on peoples trust

Current Status and Review of Spent Fuel Management in HANARO Research Reactor

2025. Feb. 20.

DongHyuk Lee Korea Atomic Energy Research Institute

A nuclear research institute reshaping the future based on peoples trust

03

04

05

KAERI Research Institute

- 01 Introduction of HANARO
- 02 Current Status of HANARO SF Management
 - **Review of Previously Proposed Solutions**
 - Design of Compact Storage Module

Summary

0

Current Status and Review of SF Management in HANARO

Introduction of HANARO

1 Introduction of HANARO

HANANRO: High-flux Advanced Neutron Application ReactOr

Reactor Type	Open-tank-in-pool	_			
Power	30 MWth				
Fuel	LEU(19.75 w/o 235 U,	_			
Fuel	U ₃ Si-Al Meat, Al clad)			THERMOSIPHONING OPEING	
Coolant	H ₂ O	PCS OUTLET			
Moderator	H ₂ O/D ₂ O	-			
Reflector	D ₂ O	REFLECTOR OUTLET			103
Absorber	Hafnium			K	
Core Cooling	Upward Forced Convection Flow	_	C. A.	FLOW TUBE	
	+ Bypass Flow	_		Eat	BEAM TUBE
Reactor Building	Confinement			EXPERIMENTAL SITE REFLECTOR INLET	
Max. Thermal Flux	4~5x10 ¹⁴ n/cm ² s			HEADER	OUTER CORE SITE
Holes & tubes	7 horizontal ports	_	and the second	GRID PLATE COOLINGHEADER	
	& 36 vertical holes	PCS INLET		REFLECTOR INLET	KI IPA
Operation Cycle	28/14 days operation/maintenance		0 8 0	GRID PLATE COOLING HEADER	4 4
	8 cycles/yr (~200 days/yr)				

01

Current Status and Review of SF Management in HANARO Introduction of HANARO

1 Introduction of HANARO

Reactor Core and Fuels

Fuel meat	U3Si dispersion fuel (LEU 19.75 w/o) in Al matrix
Material	61.4 wt.% U ₃ Si - 38.6wt.% Al
Theoretical density	5.4 g/cc
U-density	3.15 g-U/cc
Diameter of fuel meat	6.35 mm, 5.49 mm
Length of fuel meat	700 mm
Cladding	Co-extruded AI 1060 with 8 fins
Fuel assembly	Hexagonal(36 el.) Circular(18 el.)

Reactor core

Introduction of HANARO

Hexagonal FA (36-rods)

Shape	Hexagonal
Length (mm)	961
Number of Element	36
 standard core element 	18
reduced core element	18
Mass of Bundle (g)	6784
Mass of fuel meat (g)	3719
Mass of uranium (g)	2169
Mass of U-235 (g)	428
Initial linear fissile content (g U-235 /cm)	
 standard core element 	3.55
reduced core element	2.64
Element pitch (mm) (nominal)	12
Element spacing (center to center)	
- at end plate (mm) (nominal)	12.0
Pitch circle diameters (reference)	
- inner row (mm)	24.0
- intermediated row (mm) (two diameters)	41.57 and 48.0
 outer row (mm) (two diameters) 	63.50 and 71.6
End plate	
- thickness (mm)	8
- dimensions across flats (mm)	73.8 (nominal)
Central Rod	
- material	Zircaloy-4
- diameter - outer	8.0 (nominal)
- flat to flat (mm)	6.05 (nominal)
- length (mm)	894.6

Circular FA (18-rods)

961
18
3848
2131
1244
246
3.55
12
12
24.0 47.18
8.0 59.4 (nominal)
Zircaloy-4 8.0 (nominal) 6.05 (nominal)

Reactor Pools

JZ

Current Status and Review of SF Management in HANARO

Current Status of HANARO Spent Fuel Management

Korea Atomic Energy KAERI Research Institute

What Makes HANARO Fuel Exotic(non-standard) in SF Management?

- Rod-type fuel in research reactor (vs. Plate-type)
- LEU fuel (19.75 w/o, but relatively high compared to commercial NPP)

•?

Comparison of decay heat of SF: Research Reactor vs. Commercial NPP

Decay Heat	HANARO SF (100 GWD/MTU)	PWR SF (45 GWD/MTU)	CANDU SF (7.5 GWD/MTU)
W/MTU	3.29E+03	1.62E+03	2.25E+02
vs. PWR SF	2.03	-	-
vs. CANDU SF	14.62	-	-

- 3 storage racks placed inside the HANARO SF storage pool
- Each rack designed to stack Fuel Storage Modules in three layers
 - Hexagonal FA (36-rods) storage module (5×5)
 - Circular FA (18-rods) storage module (6×4)
 - TRIGA fuel storage module

Korea Atomic Energ

Research Institu

KAERI

Capacity of SF Storage

- Hex. FA (36-rods) / Cir. FA (18-rods) storage modules can store 600 / 432 bundles
- TRIGA fuel storage module is empty (returned to the US)

	Hex. FA (36-rods)	Cir. FA (18−rods)	TRIGA
# of FA per storage module	25 (5 x 5)	24 (6 x 4)	-
# of storage module	24 (8 x 3 layers)	18 (6 x 3 layers)	
Total capacity (bundles)	600	432	
Dimensions of storage module (WxDxH, mm)	800×780×1126	800×490×1126	690×506×1126
FA pitch (mm, minimum)	150	120	_
Cell tube dimension (Outer diameter/Thickness, mm)	101.7 / 3.0	73.0 / 3.0	

1 cycle = 28 / 14 days

operation / maintenance

Expected Saturation Time of the SF Storage Pool

- HANARO is expected to operate for **<u>6 to 8 cycles per year</u>**
- 5 bundles of SF (<u>3 Hex. FA + 2 Cir. FA</u>) are generated for each cycle
- The estimated saturation time is approximately between 2035 and 2039

Fuel Assembly	Storage Ca	apacity and Curr Inventory	Expected Full Year		
Туре	Capacity [ea]	Inventory [ea]	Storage Usage [%]	Practical Scenario* [year]	Max. Operation Scenario** [year]
Hex. FA (36-rods)	600	344	57.3%	2039	2035
Cir. FA (18-rods)	432	202	46.8%	2044	2039
Total	1032 (1839 kg-U)	502 (917 kg-U)	48.6%		

* Operation of 6 cycles (24 weeks) per year

** Operation of 8 cycles (32 weeks) per year

13

Current Status and Review of SF Management in HANARO

Review of Previously Proposed Solutions

03 Review of Previously Proposed Solutions

Backgrounds

- A study on this issue (SF storage full) was already conducted in 2014
 - The storage-full was expected to be reached in <u>2022 at that time</u>
- However, due to seismic reinforcement project and changes in the regulatory environment, HANARO operation did not <u>return to normal for a long time (2015 ~ 2024)</u>

03 Review of Previously Proposed Solutions

Backgrounds

- Recently, as HANARO's operating rate has improved \rightarrow expected full at 2035 ~ 2039
 - Now, we should study again the previously proposed solutions
- In the previous study, three options were considered:
 - Conversion to <u>compact storage module(rack)</u>
 - Dry cask storage
 - US return program for SF with US-origin uranium

KAERI Korea Atomic Energy Research Institute

03 Review of Previously Proposed Solutions

Dry Cask Storage

The previous study was conducted with reference to the SF storage strategy of Korean <u>CANDU</u>-type NPP in Korea

03 Review of Previously Proposed Solutions

Dry Cask Storage - Decay heat analysis

- Calculation conditions
 - Code: ORIGEN-ARP / SCALE-SAS2
 - Hex. FA (36-rods) with 100 GWD/MTU discharge burnup
- Maximum 4000 W/MTU after <u>10 years</u> of cooling
 - <u>4000 W/MTU</u> \rightarrow <u>8.7 W per FA</u> \rightarrow <u>0.241 W per rod</u>

03 Review of Previously Proposed Solutions

Dry Cask Storage - Preliminary thermal analysis

- Surface temperature of fuel rod
 - 0.241 W per rod \rightarrow <u>0.723 W</u> (conservatively)
 - Natural convection at the surface (h = 0.59 k/H $Ra^{0.25}$, 10⁴< $Ra < 10^9$)
 - Approximately 15 °C higher than ambient air
- Surface temperature of dry cask
 - It seems that cask (diameter 3m, height 6m) can contain 240 FA
 - Total decay heat inside cask would be <u>2100 W</u>
 - Natural convection at the surface (h = 0.021 k/H $Ra^{0.4}$, 10⁹< $Ra < 10^{13}$)
 - It is expected to maintain below <u>45 °C</u> (about 15 °C higher than ambient air)

03 Review of Previously Proposed Solutions

US Return Program(ended)

- FRR SNF AP(Foreign Research Reactor SNF Acceptance Program) of US DOE (1996~2019)
- The previous study refers to the case of Austrian ASTRA reactor
 - Cost of 1,206,240 \$ for 54 fuel rods (HEU+LEU)

Target Countries for FRR SNF AP

Korea Atomic Energ

Research Institute

KAERI

Transportation Cases (~2004)

Transportation basket (Austria, 2005)

03 Review of Previously Proposed Solutions

US Return Program(ended)

- (2016~) 7,500 USD/kgU for LEU (minimum of 0.2 M USD per case) without cost of shipment
- In 2014, it was estimated that total return costs for HANARO SF (including containers, and shipping fees) would be between <u>15 ~ 25 million USD</u>
 - 10 million USD for nuclear fuel return
 - 1 million USD for container
 - Others for shipping and associated costs

Effective dates	Aluminum fuel	based	Training, Research, Isotopes, General Atomics (TRIGA)		
	LEU	HEU	LEU	HEU	
Current Rates Date of Publication in Federal Register	\$3,750 5,625 7,500	\$4,500 4,500 6,750	\$4,500 5,625 7,500	\$4,500 4,500 6,750	
January 1, 2016	7,500	9,000	7,500	9,000	

The Department of Energy is also implementing a new minimum fee of \$200,000 per shipment of any type and amount of eligible fuel to reflect a minimum cost of providing acceptance services.

All rates are "per kg total mass" (not heavy metal mass).

The first phase of the change in the current fee policy takes effect immediately upon publication of this Notice in the Federal Register.

Fee Policy for Return (without cost of shipment)

TABLE 1-SUMMARY OF FEE POLICY

Current Status and Review of SF Management in HANARO

Design of compact storage module

U4 Design of compact storage module

KAERI Research

Assumptions and Constraints of the New Design

- No modification for FA
- No modification for storage rack (3 layers)
 - Additional layer can cause an issue of mechanical integrity
 - Replacement can cause an issue of handling and disposal of irradiated storage rack
- Utilization of TRIGA fuel storage (empty now) space

Design requirement* for

- Criticality: $k_{eff} < 0.90$ with considering bias, uncertainty, abnormal condition
- Shielding: radiation level outside the wall < 12.5 µsV/hr
- Mechanical integrity: sufficient structural integrity even in the event of an earthquake
- Cooling: $T_{pool} < 40 \text{ °C}$ (in case of accident < 50 °C)
- Purification of SF pool: water quality is at the same level as the reactor pool

Re-evaluation of the minimum spacing limit between FA

- Minimum spacing between FA were limited as **14/11 cm (Hex./Cir.)** in terms of criticality safety
- Previous design calculation was too conservative without considering SS structural material

MCNP calculation model

U4 Design of compact storage module

Re-evaluation of the minimum spacing limit between FA

- Safety limit for criticality is **0.90**
 - \rightarrow **<u>0.88</u>** with considering bias, uncertainty, abnormal condition
- Pitch (consideration of SS cell tubes): $14/11 \rightarrow 13/10 \text{ cm}$ (Hex./Cir.)

Location	FA per module	Pitch (cm)	Cell tube Thickness (mm)	Criticality		Location	FA per module	Pitch (cm)	Cell tube Thickness (mm)	Criticality	
5×5 Hex. FA rack 6×6		5 15.0×15.0	3.0	0.594	Current	Cir. FA rack	6×4	12.6×11.8	3.0	0.545	Current
	5×5		2.1	0.621					2.1	0.576	
			No Tube	0.723							
	6×6	12.6×12.6	2.1	0.810	New		7×4	10.8×11.8	2.1	0.651	
	6×7	12.6×10.8	2.1	0.901			7×5	10.8× 9.4	2.1	0.771	New
	7×7	10.8×10.8	2.1	1.006		TRIGA rack	6×4	10.8×12.2	2.1	0.634	
TRIGA rack	5×4	12.9×12.2	2.1	0.815	New		6×5	10.8× 9.7	2.1	0.755	New

Re-evaluation of the minimum spacing limit between FA

KAERI Research Institute

Korea Atomic Energy

Detailed Design Plan for Compact SF Storage Module

The biggest difference is the change in the number FAs per storage module:

 $(5x5) \rightarrow (6x6)$

Criticality Safety

In case of vertical overload accident

Overload location	Hex. FA Storage (<i>k_{eff}</i>)	Cir. FA Storage (<i>k_{eff}</i>)	
Center	0.70351 ± 0.00010	0.68232 ± 0.00009	
Side	0.70353±0.00010	0.68216±0.00009	
Corner	0.70348±0.00009	0.68227±0.00011	
Ref.	0.70363±0.00011	0.68213±0.00010	

04 Design of compact storage module

Criticality Safety

In case of horizontal overload accident

Overload location	Hex. FA Storage (<i>k_{eff}</i>)	Cir. FA Storage (<i>k_{eff})</i>
Center	0.70342 ± 0.00010	0.68233±0.00010
Wall	0.70346±0.00010	0.68239±0.00009
Ref.	0.70363±0.00011	0.68213±0.00010

U4 Design of compact storage module

Criticality Safety

Partial submersion condition (coolant leakage accident)"

04 Design of compact storage module

Criticality Safety

- Study on the Impact of the $S(\alpha, \beta)$ Library
 - 400 K library is the most conservative

Thermal Safety - decay heat analysis

- Discharge burnup: 90~100 GWD/MTU \rightarrow <u>120 GWD/MTU</u> (for conservatism)
- Total decay heat is 40,150 W (SF storage is full)

Cooling Time (day)	Decay heat (W/g)
0	17.887
1	1.351
3	0.9519
5	0.7956
10	0.5983
30	0.3380

04 Design of compact storage module

Thermal Safety

- It is predicted that it will take more than approximately **100 days until coolant boiling**
- In the event of a loss of cooling accident, the coolant temperature can be maintained <u>below</u> <u>50°C for more than 100 hours</u> in HANARO

case	Water level up to the top of storage rack	Normal water level	
Time to reach 80°C	_	213.0 h	
Time to reach saturation	21.4 h	319.5 h	
Boiling allowance time from saturation	20.0 h	2,331 h	
Allowable recovery time after loss of cooling	41.4 h (1.6 d)	2,650 h (110.4 d)	

04 Design of compact storage module

Radiation Shielding Analysis – source term calculation

- TRITON for XS library, ORIGEN-S for source term (included in SCALE 6.2 code system)
- Impurities in fuel (AI in U_3 Si-AI)

Element	В	Fe	Mn	Cr	Mg	Si
ppm	4	240	80	40	3	20

U4 Design of compact storage module

Radiation Shielding Analysis – dose

- MCNP 6.1 with DCF from ICRP 74
- New design meets design criteria (radiation level outside the wall < 12.5 μsV/hr).</p>

Dose rate distribution (1-day cooling)

18-rods ass

--- Total spent

mblies

mblies

lel assemblies

Extended Capacity with New Compact Storage Module Design

- The capacity of SF storage can be increased by <u>60 %</u>
- Thinner cell tube (but same outer diameter)
 - 71% weight reduction for one cell tube \rightarrow 3% increase in total \rightarrow mechanical integrity

	Hex. FA (36-rods) Storage Module	Cir. FA (18-rods) Storage Module		
Туре	Current Storage Rack	TRIGA Storage Rack	Current Storage Rack	TRIGA Storage Rack	
# of FA per storage module	36 (6x6)	20 (5x4)	35 (7x5)	30 (6x5)	
# of storage module	24 (8 x 3 layers)	6 (2 x 3 layers)	18 (6 x 3 layers)	3 (1 x 3 layers)	
Storage capacity (bundle)	864	120	630	90	
Total	984		720		
Expansion factor	1.64 (=984/600)		1.67 (=720/432)		
Weight ratio for cell tube	1.017 (36/25*0.706)		1.034 (35/24x0.709)		

Cost and Gain of the New Storage Module

- Total cost(estimated in 2018) for new storage module is about 2.5 million USD considering
 - 5 years of project lead timeline (design, licensing, manufacturing, installation)
 - Manufacturing Hex. FA (36-rods) / Cir. FA (18-rods) storage module (30 / 21 EA)
 - Removal and disposal of existing storage module
 - Installation
- With new storage module, the saturation time of SF storage can be extended to <u>2051~2060</u>

Fuel Assembly Type	Storage Capacity and Current(2025) Inventory			Expected Full Year	
	Capacity [ea]	Inventory [ea]	Storage Usage [%]	Practical Scenario* [year]	Max. Operation Scenario** [year]
Hex. FA (36-rods)	984	344	35.0%	2060	2051
Cir. FA (18-rods)	720	202	28.1%	2068	2057

Current Status of SF Management in HANARO

- HANARO is 30 MW open-tank-in-pool type research reactor
- U₃Si dispersion fuel (LEU 19.75 w/o) in Al matrix
- 3 Hex.(36-rods) / 2 Cir.(18-rods) FAs of spent fuel for each cycle (6~8 cyc. per yr)
- Storage full of SF pool is expected to be 2035 ~ 2039

Review of Previously Proposed Solutions

- Previous studies (compact storage module / dry cask / US return program) were reviewed
- In the design of the compact SF storage module, criticality, decay heat, radiation shielding analysis were considered
- With new compact design, the capacity of SF storage can be incread by 60 %
 - \rightarrow the storage full year can be extended to 2051 ~ 2060

KAERI Research Institute

THANK YOU

C