Technical Meeting on Operating Experience and Lessons Learned on Managing Non-Standard Legacy Power and Research Reactor Spent Fuels, EVT2304628, 18-21 February, 2025, Vienna, Austria

EXPERIENCE OF THE INSTITUTE OF NUCLEAR PHYSICS IN MANAGING FRESH AND SPENT NUCLEAR FUEL FOR A SPACE NUCLEAR FACILITY

A. SHAIMERDENOV, Sh. GIZATULIN, Y. YERMAKOV The Institute of Nuclear Physics, 1 Ibragimov st., 050032 Almaty, Kazakhstan

The Institute of Nuclear Physics

The headquarter of the Institute is located in Almaty. There are branches in the cities of Astana and Aksai.

WWR-K research reactor

- Type: tank
- Thermal power: 6 MW
- Moderator: demineralized water
- Reflector: demineralized water and beryllium
- Coolant: demineralized water
- Pressure: atmospheric
- Coolant flow: forced
- Coolant circuits: two
- Core diameter: up to 720 mm
- Core height: 600 mm
- Fuel: dispersed UO₂+AI matrix (LEU since 2016)

WWR-K research reactor: applications

Experimental facilities

Additional facilities and instruments:

☐ Hot cells (two kind, total 9 cells);

- Critical assembly (100 W, light water, LEU since 2012);
- **I** Hydraulic transfer system (loading/unloading capsules);
- Pneumatic transfer system (loading/unloading capsules for NAA);
- **Gas-vacuum loop facility (high temperature and instrumented irradiation);**
- **CIRRA** facility (gas release measurements);
- **TITAN** facility (neutron imaging and tomography);
- ❑ Neutron reflectometry (optical properties measurements);

Radioactive waste storage places

Low activity radioactive waste storage

Nuclear fuel for space nuclear facility (1)

1968-1991 research on processes in nuclear thermionic elements under irradiation and in-pile testing of thermionic electricity generating assemblies (EGA)

Reflector (Be)

Nuclear fuel for space nuclear facility (2)

Main stages of thermionic converters testing:

- □ thermal vacuum preparation at zero power and degassing of the fuel-emitter unit;
- □ transfer of the EGA from vacuum mode to energy mode;
- study of the EGA parameters under different controlled irradiation conditions and their optimization;
- comparison of experimentally measured characteristics with calculated ones;
- □ life tests for stability and reproducibility of operating parameters over time;
- ☐ dismantling of the loop channel and EGA in the hot cell and post-irradiation examinations.

Nuclear fuel for space nuclear facility (3)

EGAs

Nuclear fuel for space nuclear facility (4)

Example of the loop channel

Example of the electricity generating assembly

Dry storage, disposal path TBD

Other experimental fuel tests

Life test of lead test assemblies with LEU fuel

High temperature irradiation tests

Reactor test of TRISO fuel

Dry storage,

disposal path TBD

- □ Time-average temperature of irradiation: 990°C
- Environment: pure helium
- □ The average burnup: 9.9% FIMA
- □ The maximum accumulated fast neutron fluence ($E_n > 0.18$ MeV): 0.83×10^{21} n/cm².

PIE method	Instrumentation	Information obtained
Appearance observation	Lens	Visual inspection
Dimensional change	Mechanical micrometer MATRIX with the measurement uncertainty 0.01 mm	Swelling or shrinkage effect
Gamma spectrometry	Canberra GX-2518 germanium semiconductor gamma spectrometer	Determination of fuel failure fraction, fuel burnup
X-ray radiography	RPD-250 X-ray unit	Determination of fuel failure fraction

- > Notification of the regulatory authority and the IAEA;
- IAEA safeguards;
- Nuclear security measures;

Safe/secure storage of experimental spent nuclear fuel has been ensured for over 50 years

IAEA;

 \succ IAEA safeguards;

Nuclear security measures;

SUMMARY

- ✓ In the period 1968-1991, active research of power generating assemblies for thermionic space nuclear reactors was conducted at the WWR-K research reactor.
- ✓ As a result of this activity, measures for handling fresh and spent nuclear fuel of thermionic converter reactors were developed and tested.
- ✓ The generated spent nuclear fuel of thermionic converter reactors has been safe/secure stored at the INP for over 50 years.
- \checkmark Disposal path still to be determined.

Thank you for your attention! @inp_kz @inp1957 @inp_kz

