

Plans for management of research reactor spent fuel in Norway

Peter Bennett

Technical Meeting on Operating experience and Lessons Learned on Managing Non-Standard Legacy Power and Research Reactor Spent Fuels

18 – 21 February, 2025

IFE Spent fuel management in Norway: key players

Ministry of Trade, Industry and Fisheries

Funding for decommissioning and RW management

Norsk nukleær dekommisjonering (NND)

- RWMO, established 2018
- Will take over nuclear facilities and staff from IFE

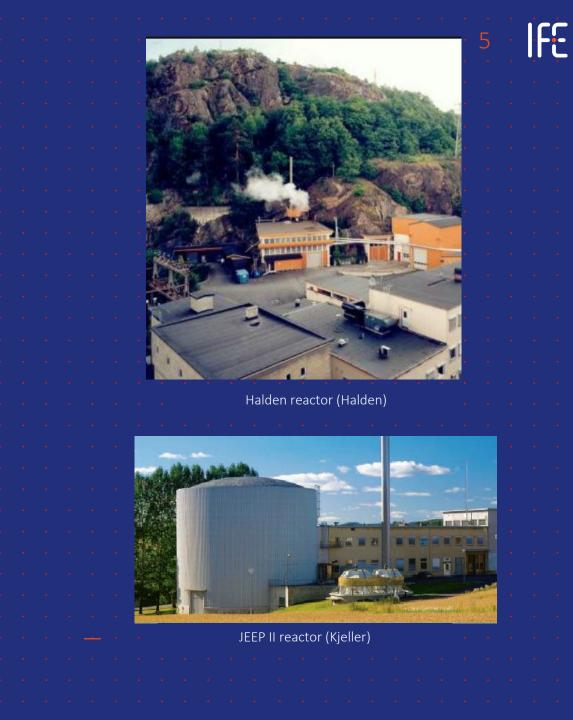
- Licensee
- Responsible for storage of spent fuel until transfer to NND

Institute for Energy Technology (IFE)

- Independent foundation
- Established by the Norwegian government in 1948 as Institute for Atomic Energy
- Changed name to IFE in 1980s
- 2 locations in SE Norway
- 100 M€ annual revenues
- 600 employees
- 38 nationalities

ent in	IF	E	
IFE Invest AS	R&D	Radiopharmacy	Nuclear operation and safety
Subsidiaries		Divisions	

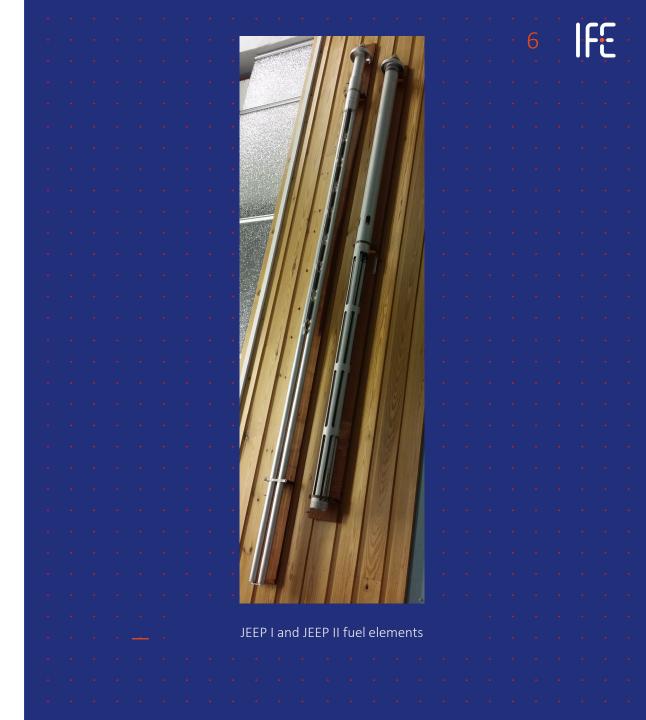
Norwegian Nuclear Decommissioning (NND)


- State Agency under Ministry of Trade
- Located in Halden
- Established by the Norwegian government in 2018. Not considered appropriate to manage RW through an independent foundation such as IFE
- At that time 2 research reactors in operation, not planned for NND to take over operating RRs
- RRs closed in 2018 and 2019. Plan changed to transfer nuclear facilities and staff (ca 200) from IFE to NND as soon as possible
- Transfer delayed due to judicial and regulatory issues, current estimate is 2025 (Halden) and 2028 (? Kjeller)
- Currently ca 40 employees

Research reactors in Norway

IFE operated four research reactors in Norway:

- JEEP I 1951 1967 Kjeller
- NORA 1961 1967 Kjeller
- JEEP II 1966 2019 Kjeller
- Halden Reactor 1959 2018 Halden


• No commercial nuclear power in Norway

Spent fuel in Norway

Only a relatively small amount (16,5 tonnes), but many types:

- Metallic uranium, aluminium clad, natural enrichment
- UO₂, aluminium clad, 3,5% enrichment
- UO₂, Zircaloy clad, up to 19,9% enrichment
 Similar to power reactor fuel (but generally higher enrichment)
- Experimental fuel from Halden reactor, <5 to 93% enrichment
 - UO₂
 - $UO_2^2 Gd$
 - Doped UO₂
 - MOX
 - ThO₂
 - PuThO
 - HEU-Th
 - Inert matrix fuel
 - Extruded fuel
 - Spherepac
 - Coated fuel
 - •
 - Various claddings: Zircaloy, Zry developments, steel, Al ...
- Stored as assemblies and individual rods
- Failed fuel, some encapsulated in welded-shut containers
- Sectioned fuel for PIE
 - Often embodied in epoxy
- Burnup range 0,1 to >100 MWd/kg HM

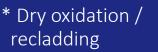
IFE

Storage experience

- Old facilities all constructed 1950s and 1960s
- Different designs no two facilities are the same
 - Designed and constructed to the then current standards and requirements
 - Wet and dry
- Varying condition
- Some modifications / improvements made, and others proposed
- Aging management programmes in place for some facilities, but are under revision
- Other AMPs under development
- Fuel with known failures placed in storage but unknown extent of further failures or degradation

Development of a national strategy for SNF management

- meanwhile continuing storage

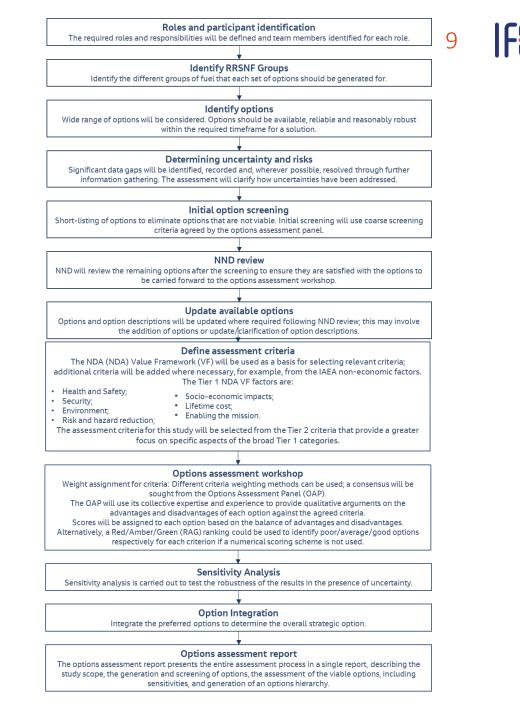


2015-2016: Choice of Concept study and review

NND/IFE continue work on strategy for spent fuels management

* Direct disposal

Review by regulator


2023 -2025

New study: Clarification phase

* Align government and regulatory requirements

Multi-criteria decision making

- Method similar to IAEA BRIDE-BASCET methodology, as practised in UK
- Options assessment panel recruited. Expertise in:
 - Workshop facilitator (non-voting)
 - Workshop secretary (non-voting)
 - Technical feasibility
 - Safety
 - Security
 - Environment
 - Regulatory and international requirements
 - Disposal
 - Transport
 - Costs

Screening criteria (Yes / No)

- Does the option meet the project objectives?
- Is the option technically feasible?
- Can the option meet national policy and strategy, and all legal and regulatory requirements?
- Can implementation of the option meet the required timescales?
- Is the option clearly sub-optimal?

Assessment criteria

- Health & safety
 - Workers / public radiological & non-radiological risk
 - Nuisance
- Security
 - Waste
 - Information
- Environment
 - Discharges: radiological & non-radiological
 - Materials & sustainability
 - Non-human biota
- Risk / hazard reduction
 - Disposability
 - Radiological & non-radiological risk reduction

- Socio-economic
 - Infrastructure
 - Economic impact

11

- Lifetime cost
 - Costs
- Enabling the mission
 - Conceptual enablers
 - Physical enablers

Fuel groups

Group	Fuel	Cladding	Mass, kg	Enrichment, %
1	Metallic uranium	Aluminium	10 000	0,7
2	UO2	Aluminium	1 500	3,5
3	UO2	Stainless steel	< 200	1,5
4	UO2	Zircaloy	3 750	< 20
5a	UO2 with additives	Zircaloy	< 200	< 20
5b	MOX	Zircaloy	< 200	< 20
5c	Thorium fuels	Zircaloy	< 200	HEU
5d	UO2	Various	< 200	< 20
5e	«Exotic»	Various	< 200	< 20
5f	PIE residues	Various		< 20

All identified options

- Do nothing
- Storage & postponed decision
- Mechanical conditioning & direct disposal
- PUREX reprocessing
- Dry oxidation (metallic U)
- Decladding & repacking

- Melt processing
- Pyroprocessing / electrochemical dissolution
- Re-use in reactor
- Transmutation in reactor
- Encapsulation
- Return to provider

Options - after screening

Option	Sub-option		
1. Storage & postponed	-		
decision			
2. Mechanical conditioning	2: Supply chain		
with direct disposal	2N: National		
3. Processing	3a: PUREX supply chain		
	3aN: PUREX national		
	3b: Dry oxidation: Supply chain		
	3bN: Dry oxidation: national		
	3c: Decladding supply chain		
	3cN: Decladding national		

ption	Sub-option			
Processing (national)	3d: Melt processing			
Encapsulation (national)	4a: Bitumen			
	4b: Polymer			
	4c: Cement			

Fuel groups vs options suitability

	Fuel Groups	1. Storage and delayed decision	2. Mechanical conditioning for direct disposal	3. Processing followed by disposal			4. Encapsulation (without processing)			
Fuel Groups		1a, 1b	2: Direct Disposal	3a PUREX	3b Dry Oxidation	3c Decladding	3d Melt Consolidation	4a Bitumen Encapsulation	4b Polymer Encapsulation	4c Cementitious Encapsulation
1	1	Viable	Viable with uncertainty	Viable	Viable	Non-Viable	Viable	Viable with uncertainty	Viable with uncertainty	Non-Viable
2	2	Viable	Viable with uncertainty	Viable	Non-Viable	Viable	Viable	Non-Viable	Non-Viable	Non-Viable
3	3	Viable	Viable	Viable	Non-Viable	Non-Viable	Viable with uncertainty	Non-Viable	Non-Viable	Non-Viable
4	4	Viable	Viable	Viable	Non-Viable	Non-Viable	Viable	Non-Viable	Non-Viable	Non-Viable
	5a	Viable	Viable	Viable	Non-Viable	Non-Viable	Viable	Non-Viable	Non-Viable	Non-Viable
	5b	Viable	Viable	Viable with uncertainty	Non-Viable	Non-Viable	Non-Viable	Non-Viable	Non-Viable	Non-Viable
	5c (1,2,3)	Viable	Viable	Non-Viable	Non-Viable	Non-Viable	Viable	Non-Viable	Non-Viable	Non-Viable
5	5c (4)	Viable	Non-Viable	Non-Viable	Non-Viable	Non-Viable	Viable	Non-Viable	Non-Viable	Non-Viable
	5d	Viable	Viable	Viable	Non-Viable	Non-Viable	Viable	Non-Viable	Non-Viable	Non-Viable
	5e	Viable	Viable	Viable with uncertainty	Non-Viable	Non-Viable	Viable	Non-Viable	Non-Viable	Non-Viable
	5f	Viable	Viable	Viable with uncertainty	Non-Viable	Non-Viable	Viable	Viable with uncertainty	Viable with uncertainty	Viable with uncertainty

Possible waste forms from SNF processing – requirement for compatibility with storage and disposal

- Fuel rods and/or assemblies after mechanical treatment placed in eg stainless steel containers
- UO₂ pellets in stainless steel tubes from oxidation of metallic uranium or decladding
- Vitrified waste from PUREX reprocessing
- Melt processing ingots
- Waste drums with bitumen/polymer/cement encaspulation of metallic uranium fuel and/or PIE residues

Status and future work

- Production of detailed option descriptions for Assessment Panel
- Options assessment workshop
- Development of integrated options
- Reporting