

12 TO

MATERIAL MANAGEMENT AND MINIMIZATION CONVERT, REMOVE, DISPOSE Office of Nuclear Material Removal and Elimination

Lessons Learned in Technology Development and Management of Non-Standard Research Reactor Spent Nuclear Fuel

February 18 – 21, 2025

Natraj Iyer, Ph.D Ian Kapuza

IAEA Technical Meeting on Operating Experience and Lessons Learned on Managing Non-Standard Legacy Spent Fuels from Power and Research Reactors

Presentation Overview

	1	_				
	ľ					

- NNSA's Role & Relevance
 - U.S. Highly Enriched Uranium (HEU) Minimization Activities and Accomplishments
 - Relevance for Exotic Spent Nuclear Fuel (SNF) Management

SNF Treatment and Conditioning Considerations

DOE's "Traditional" SNF Management Practices

Emerging U.S. Treatment and Conditioning Technologies for Non-standard Fuels

Conclusions and Summary

MATERIAL MANAGEMENT AND MINIMIZATION CONVERT, REMOVE, DISPOSE

Office of Nuclear Material Removal and Elimination

NNSA's Role and Relevance

MATERIAL MANAGEMENT AND MINIMIZATION CONVERT, REMOVE, DISPOSE CONVERT, REMOVE, DISPOSE

MATERIAL MANAGEMENT AND MINIMIZATION CONVERT, REMOVE, DISPOSE

Office of Nuclear Material Removal and Elimination

Program Mission

Office of Reactor Conversion and Uranium Supply	Office of Nuclear Material Removal and Elimination	Office of Plutonium Disposition
(NA-231)	(NA-232)	(NA-233)
 Eliminate the need for, and production of, weapons- usable materials in civilian applications Provide a sustainable supply of high-assay low-enriched uranium (HALEU) for research reactors and isotope production so that highly enriched uranium (HEU) minimization successes endure Support establishment of domestic commercial production of molybdenum-99 	 Identify excess nuclear material and implement solutions for its removal and/or in-country elimination to reduce the risk a terrorist or malevolent actor could acquire it Maintain capabilities to expeditiously characterize, stabilize, and package at-risk nuclear materials globally Identify and eliminate sensitive nuclear infrastructure at research reactors' end-of-life 	 Dispose of surplus plutonium (Pu), in support of U.S. nonproliferation and disarmament commitments. Remove material from the State of South Carolina, in accordance with the 2020 Settlement. Engage partner-states to support responsible plutonium management and disposition.

Program Mission

Identify excess nuclear material and implement solutions for its **removal** and/or **in-country elimination** to reduce the risk a terrorist or malevolent actor could acquire it

Removal is the transportation of material to its country of origin or an appropriate third country for elimination

In-country activities involve eliminating material in the country in which it is currently located

Elimination is a process which renders material significantly less attractive for terrorist/malevolent actor acquisition

Acquisition for use in an improvised nuclear device*

What's the Scope?

Identify excess nuclear material and implement solutions for its removal and/or in-country elimination to reduce the risk a terrorist or malevolent actor could acquire it

Aluminum-based fuels – $UAl_{x'}$ Al- $UO_{2'}$ Al- $U_{3}O_{8}$

TRIGA Fuel – U-ZrH

"Common" bulk/feedstock materials – U metal, oxides, silicides, nitrate, UF₄

Graphite-based fuels – TRISO, U-SiC-Graphite pebbles, U-Th oxide kernels

*Thorium-based fuels - UO*₂-*ThO*₂

Exotic/"uncommon" fuels and feedstocks – Nitrides, carbides, Pu, UF₆

Significant experience and expertise in packaging and transport of SNF from around the world

Availability of technologies to treat and condition these materials has been key to U.S. minimization activities and a critical driver for technology development activities

Convergence of Fuel Types

Traditional Power Reactor Fuels

- Zircaloy-clad UO₂
- Zircaloy clad Mixed Oxide (U-Pu)

Current and Legacy Research, Test and Demonstration Reactors

- Aluminum-based fuels UAl_x, Al-UO₂, Al-U₃O₈
- TRIGA Fuel U-ZrH
- "Common" bulk/feedstock materials U metal, oxides, silicides, nitrate
- Graphite-based fuels TRISO, U-SiC-Graphite pebbles, U-Th oxide kernels
- Thorium-based fuels UO₂-ThO₂
- Nitrides, carbides, Pu

Advanced Reactors including SMRs, Microreactors Fuels for Power and RTRs

- Zircaloy clad UO₂
- Graphite-based fuels TRISO, U-SiC-Graphite pebbles
- Thorium-based fuels UO_2 -Th O_2
- Molten Salt Fuel based reactors
- Nitrides, carbides, Pu

Many of the power reactor fuel systems being considered are same as those used in RTRs

Accomplishments to Date

As of February 2025, M3's Office of Nuclear Material Removal and its international partners have eliminated more than 7,340 kilograms of weapons-usable nuclear materials from 48 countries and Taiwan—enough for approximately 328 nuclear weapons.

Over 410 kilograms of plutonium removed to date enough for approximately 51 nuclear weapons

 \odot 0 0 0 0 \odot 3 \odot \odot \odot \odot \odot \odot \odot \odot 3 \odot \odot (3) \odot 3 \odot \odot \odot \odot 3 \odot \odot \odot 3 \odot \odot 3 \odot \odot \odot \odot \odot 3 \odot \odot \odot \odot \odot \odot **O o**t **o**t \odot \odot \odot \odot \odot \odot \odot \odot 3 \odot 3 3 \odot 3 3 3 \odot * * * * * * * * * * * * * \odot \odot \odot \odot \odot

Over 6,930 kilograms of HEU removed to date—enough for approximately 277 nuclear weapons

Research Reactor Spent Fuel Wet Storage

U.S.-origin HEU SNF has been primarily stored in spent fuel basins pending treatment and conditioning

- Significant lessons learned through this process.
 - Water quality, including conductivity, pH and basin materials of construction are key to extended basin (wet) storage
 - DOE's Savannah River Site L-basin holds many non-standard fuels, many of which have been in storage for over 60 years
 - See, e.g., Good Practices for Water Quality Management in Research Reactors and Spent Fuel Storage Facilities, IAEA Nuclear Energy Series No. NP-T-5.2
- Defensible scientific basis for extended wet storage of research reactor SNF
- Extensive experience in wet storage of RTR (standard and non-standard) exists
 globally

AND MINIMIZATION

CONVERT, REMOVE, DISPOSE

Office of Nuclear Material Removal and Elimination

SNF Treatment & Conditioning Considerations

Defining Terms

Treatment

Minimizing the volume of material to be disposed

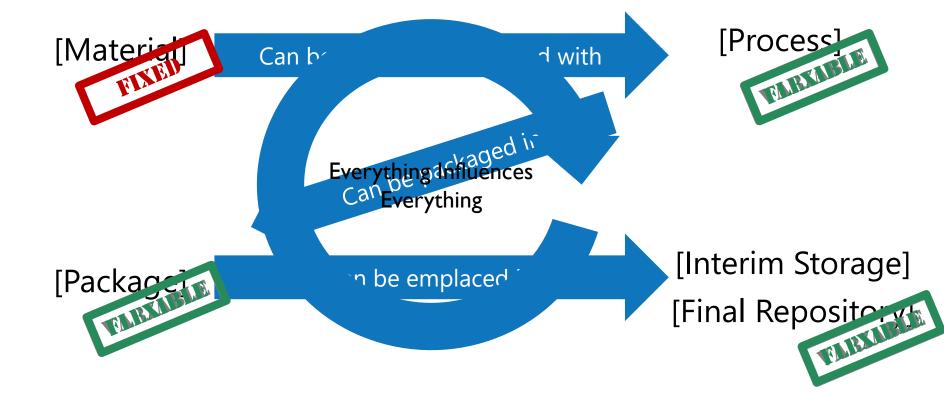
Driven by logistical, practical, or economic considerations

Conditioning

Transforming material to a stable state to reduce potential hazards of material being disposed

Driven by safety considerations

Can include the downblending of HEU to low-enriched uranium (LEU)



CONVERT, REMOVE, DISPOSE

Removal and Elimination

A Guiding Framework

Why Treat & Condition?

Enhance security and safety particularly for weapons-usable materials

Reduce costs for future storage/disposal

Tailor products to meet waste acceptance criteria

Manage infrastructure footprint

Establish lifecycle certainty

Key Considerations for T&C

Front-end

Defining the materials to be treated/conditioned

Characterizing the materials to be treated/conditioned

Documentation (material provenance, operating/use history, support future [unknown] needs)

Back-end

Material end-point (storage/disposition)

Waste acceptance criteria & product form

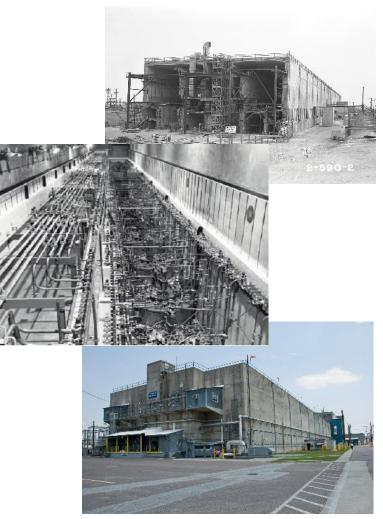
Synthesis

Given these: what options are technically, economically, and politically feasible?

AND MINIMIZATION

CONVERT, REMOVE, DISPOSE

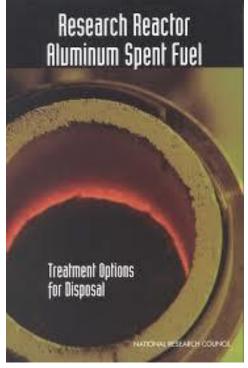
Office of Nuclear Material Removal and Elimination


DOE's "Traditional" SNF Management Practices

Traditional Approaches: Conventional Processing

H-Canyon is the only operating, production-scale, shielded separations facility in the United States

- Has operated since 1955
- Although primarily used for aluminum clad MTR fuel, it has also been applied to non-standard SNF such as U-Th metal fuel
- Early application included separation of fissile material but this approach has now fully transitioned to the "ABD mission" which is primarily a downblending and vitrification operation

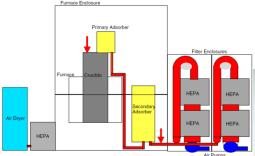

Photos source: DOE

1998 National Academies report summarizing possible "treatment" options for ASNF

- Examined 11 "treatment" technologies for ASNF relative to conventional processing, including two DD options and MD
- Other options examined included:
 - "Press-and-dilute" (two variants)
 - Electrometallurgical processing
 - Dissolve and vitrify
 - Glass material oxidation and dissolution
 - Plasma arc
- The two final options were screened out before further analysis
 - "Canister-in-canister"
 - "Chop-and-dilute"

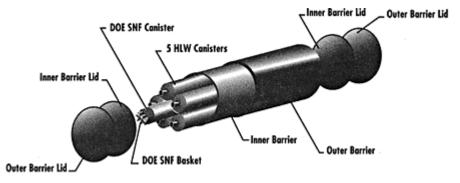
Source: National Academies, 1998

Although primarily focused on Al-Ualx and Al-UO2, it has subsequently been explored for non-standard SNF


Traditional Approaches: Alternative Technologies

Melt-dilute process for HEU ASNF

 Involves melting HEU ASNF with depleted uranium to reduce enrichment to LEU


Direct (Co-)Disposal

 Fuel would be conditioned, packaged, and emplaced in a repository

Source: Melt Dilute Treatment of Spent Nuclear Fuel Assemblies from Research and Test Reactors, H.B. Peacock et al., RERTR Conference, Budapest 1999

These technologies have not been implemented due to funding limitations and lack of a suitable repository

Traditional Approaches: TRIGA (UZrH fuel)

TRIGA (and other non-aluminum SNF) are transported to Idaho National Laboratory (INL) for storage pending disposition

- Triga fuels are drip dried and placed in vented storage at the Irradiated Fuel Storage Facility in the Idaho Nuclear Technology and Engineering Center
- Fuel is not currently being sent to INL per DOE agreement with the State of Idaho

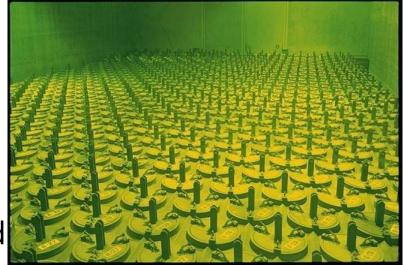


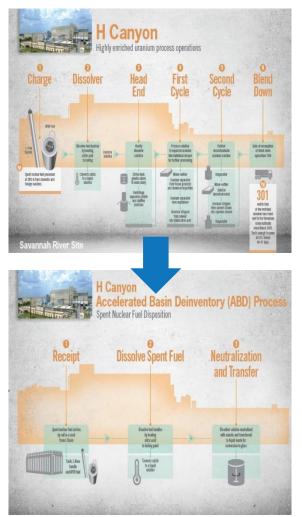
Photo source: DOE-EM

AND MINIMIZATION

CONVERT REMOVE DISPOSE

Office of Nuclear Material Removal and Elimination

"Emerging" U.S. Treatment & Conditioning Approaches for Nonstandard Fuels



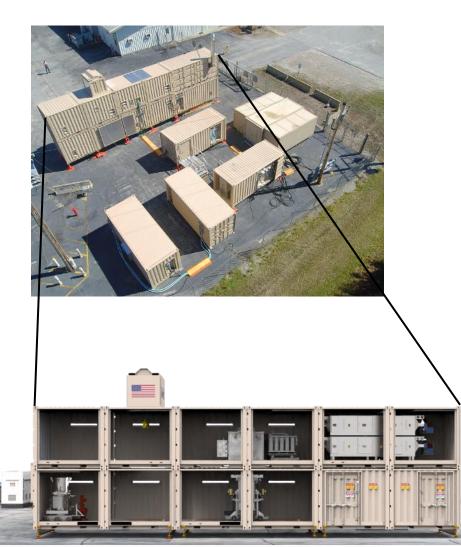
Emerging Approaches: ABD

The Accelerated Basin De-inventory (ABD) mission is similar to conventional processing in H-Canyon; however, actinide materials are not separated: they are sent to the liquid waste system for vitrification

- Enables significantly faster processing of ASNF at lower risk and cost
- Downblended uranium solution is vitrified with fission products, limiting the practical recoverability of the material
- This approach was also adopted for a small inventory of U-Th metal non-standard fuel

Source: SRS Presentation to South Carolina Governor's Nuclear Advisory Council, October 2022

Emerging Approaches: Mobile Melt-Consolidate (MMC)


Builds on the lessons learned from melt-dilute, broadens the gamut of processable materials, and does so in a deployable footprint

- Enables treatment and conditioning (including downblending) at a partner's existing facility
- Significant U.S.-Norway cooperation on this project, targeting shipment of the system to Norway in 2025

Material Type	Research reactor fuel elements or bulk materials containing HEU		
Chemical Form	Metal, alloy, oxide, silicide, carbide, graphite		
Primary* Heavy Metals	Uranium, thorium		
Cladding	Aluminum, stainless steel, magnesium, zirconium alloys		
Irradiation	Unirradiated or irradiated		
Product Mass (Per Batch)†	Up to 100-200 kg		
Typical Inventories	10s to <100 kg fissile; 5-10 countries		

Emerging Approaches: Mobile Melt-Consolidate

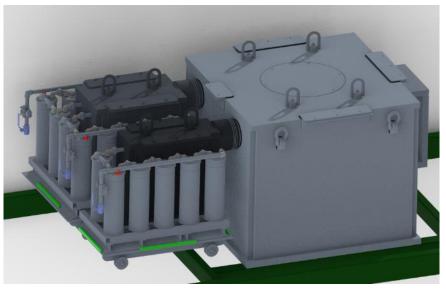


Photo Source: SRNL, DOE/NNSA, M3 program documents

Emerging Approaches: Managing Graphite

Significant interest (past and present) in graphite fuels

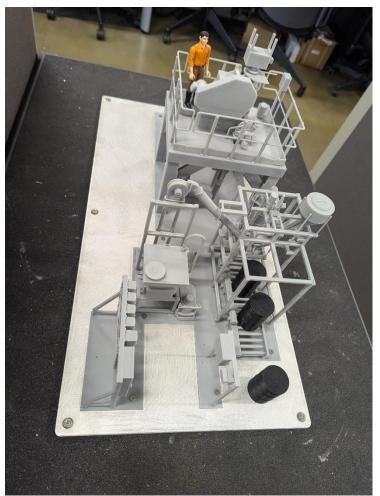
- Many different approaches to removing graphite
- Multiple U.S. National Labs exploring

	Block and compact deconsolidation	Pyre	olytic carbon breach	Silicon carbide breach		
Acid Intercalation	~					
Thermal Shock	×		1	✓		
Acoustical			~	×		
Hot Chlorine Gas			✓	✓		
Pyrometallurgical			~	✓		
Combustion			1		2	
Electrolytic – Constant Current	~] 	
Electrolytic – Pulsed Current	~			FISSION PRODUCTS HLW PRO FACI		STORAGE AWAITING REPOSITORY
Source: PNNL Report PNNL-32969, June 2022		KERNEL DISSOLUTION IPURIFICATION	NATURAL or DEPLETED URANIUM (DOWNBLENDING) LEU PRODUCT		VENDOR	
				THORIUM SALT SOLUTION WASTE DISI	POSAL FACILITIES	

Source: DOE-EM presentation to S.C. Governor's Advisory Council, July 2014

Chemical Digestion of Graphite

Source: SRNL Instagram, 2024



Emerging Approaches: Dry Downblending

NNSA has supported the **National Nuclear Center of Kazakhstan in the development** of a dry downblending system

- Designed to downblend graphite fuel from the IGR reactor
- Close coordination with IAEA
- Will involve crushing, grinding, mixing, cementation and then storage/disposal

Emerging Approaches: Next Gen Modular Downblending

As current approaches are refined and deployed, NNSA continues to explore next generation systems

- Leveraging six National Labs
- Focused on flexibility and significantly enhanced modularity, to include:
 - plug-and-play process modules
 - "mounting" in existing host facilities
 - varied waste forms
- NNSA welcomes feedback and potential applications!

Image Source: Canva

In Summary

The United States is a significant user of and has a strong interest in the development and deployment of treatment and conditioning approaches for HEU materials. These include standard and nonstandard fuel materials used in research and test reactors

- Beyond the myriad economic, environmental, and safety benefits these techniques produce, they also facilitate the elimination of weaponsusable nuclear materials (WUNM)
- Ensuring HEU minimization is factored into waste management plans is a critical step in reducing the amount of excess WUNM globally
- NNSA/M3 continues to make investments in HEU downblending technologies and other approaches to eliminate WUNM in support of its partners and international nonproliferation efforts
- These technologies can be leveraged for application to LEU/HALEU based spent fuel standard and non-standard