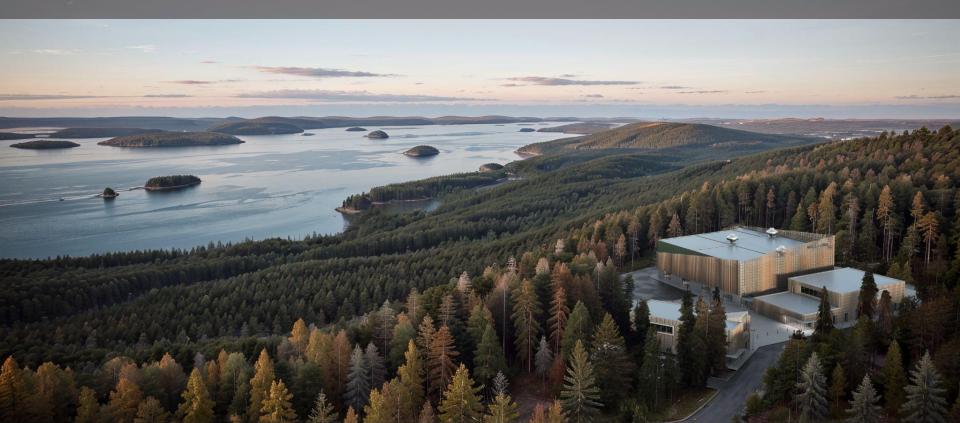
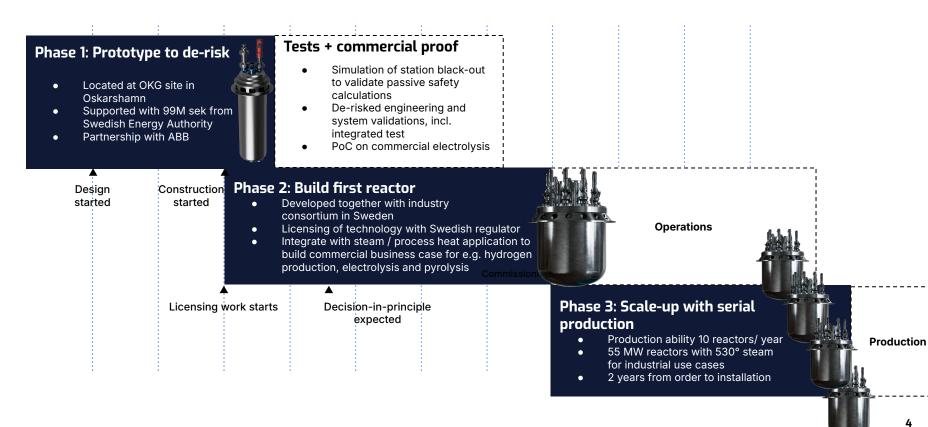
Development of Lead-Cooled Reactor Technology

Shared by Merja Pukari, COO at IAEA Technical Meeting, EVT2304628 18-21 February 2025



1. Introduction to Blykalla


- 2. Blykalla's fuel and core technology
- 3. Spent fuel on-site management
- 4. Framework for spent fuel management in Sweden
- 5. Blykalla's scenarios for spent fuel management

Blykalla is the Swedish SMR vendor building Europe's first advanced SMR: the SEALER reactor

Blykalla follows a three-step roadmap to commercialization

SEALER-One: Sweden's First Advanced Reactor

Elykalla

KEY DATA

Item	Value
Power	70 MWt
Lead coolant mass flow	3170 kg/s
Lead inventory	800 tons
Core inlet/outlet T	400°C/550°C
Secondary side inlet/outlet T	340°C/530°C
Fuel	Uranium Nitride (UN)
Maximum fuel residence time	5000 days
Peak fuel burn-up	18 GWd/ton
Peak damage dose	35 dpa

SEALER is a compact nuclear power unit

Potential Applications for SEALER extend beyond electrical power generation

Mining

- Compact size, long lifetime and no refueling are ideal for installation in off-grid locations
- Stable power supply facilitates the ٠ electrification of many operations

Steel

- Achieves smelters' electrification
- 530°C steam is ideal for production of high quality biochar to decarbonise iron ore sintering

Chemicals

- Supply direct superheated steam
- Provide power for decarbonisation through electrification
- Link with pyrolysis and HT electrolysis for H2 and biogenic CO2 supply

Maritime

- Heat & Power supply enables E-Fuels production
- Compact design is ideal for Floating NPP barges to power terminals
- Possible nuclear propulsion of ships

Cement

- 530°C heat is ideal for production of high quality biochar to replace traditional SCMs like fly ash, acting as carbon sequestration
- Enables alternative fuel use like hydrogen

Refineries

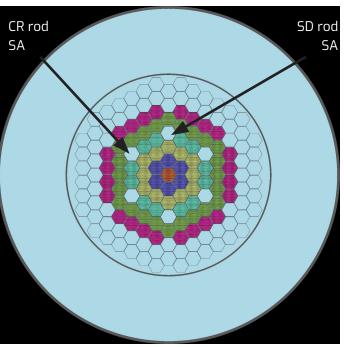
- Use of superheated steam directly in reforming processes
- Link with pyrolysis and HT electrolysis • for H2 and biogenic CO2 supply

production of SAF

Aviation

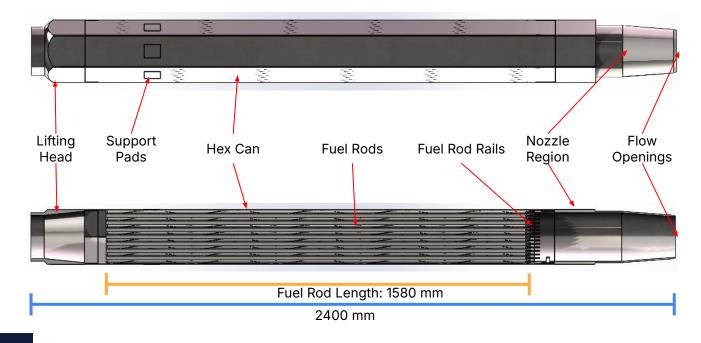
- Decarbonise ground operations by providing the electric power needed for
- Supply stable energy supply to airports

- Scalable in 55MW increments to match DC growth on the same site
- 55MW unit based clusters ensures high reliability and redundancy via optimally scheduled maintenance


- 1. Introduction to Blykalla
- 2. Blykalla's fuel and core technology
- 3. Spent fuel on-site management
- 4. Framework for spent fuel management in Sweden
- 5. Blykalla's scenarios for spent fuel management

SEALER-ONE to be fuelled with 9.9% enriched uranium nitride fuel, fuel of choice for reaching criticality with low as low enrichment as possible.

PRELIMINARY CORE DESIGN


Item	Value
Power	70 MWth
Fuel	U ¹⁵ N
²³⁵ U enrichment	9.9 wt%
Fuel mass (uranium)	27 tons
No of fuel assemblies	79
Hex-can pitch	204.4 mm
Full power life	5000 days
Peak fuel burn-up	18 GWd/ton (~2% FIMA)
Peak clad damage	35 dpa

CONCEPTUAL FUEL DESIGN

Hexagonal SEALER fuel assemblies are inspired by established fast reactor fuel design

- 1. Introduction to Blykalla
- 2. Blykalla's fuel and core technology
- 3. Spent fuel on-site management
- 4. Framework for spent fuel management in Sweden
- 5. Blykalla's scenarios for spent fuel management

FUNDAMENTALS

SEALER design takes into account the needs of spent fuel on-site management

Blykalla

SEALER is a Gen-IV breeder reactor

Safeguards by design a must

No fuel reloading, single load

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

	FUCAL PUINTS
	Fuel failure
03	Fuel removal
	SNF reprocessing

COCAL DOINTC

SEALER design takes into account the needs of spent fuel on-site management

FOCAL POINTS	AIM FOR ZERO FUEL FAILURE, PREPARE FOR THEM ANYWAY
Fuel failure	• Preventing fuel failure through QA design & fabricati
Fuel removal	 Use global lessons learned
	• Detecting fuel failure during operation
SNF reprocessing	 Identifying assembly with fuel failure
	 Managing failed fuel assembly in and ex-vessel
the hard of	• Liquid lead filtering and systems decontamination

- through QA design & fabrication and operations
- arned
- during operation
- with fuel failure
- assembly in and ex-vessel
- nd systems decontamination

Blykalla

SEALER design takes into account the needs of spent fuel on-site management

Fuel failure

Fuel removal

SNF reprocessing

BALANCE INNOVATION, SAFETY, OPERATIONAL EFFICIENCY AND COST

• Locating fuel in liquid lead

- Removing fuel with high precision in complex operating conditions
- Developing reliable and intelligent fuel removal technology, at low cost
- Preparing for an interim storage, expecting not to use it

SEALER design takes into account the needs of spent fuel on-site management

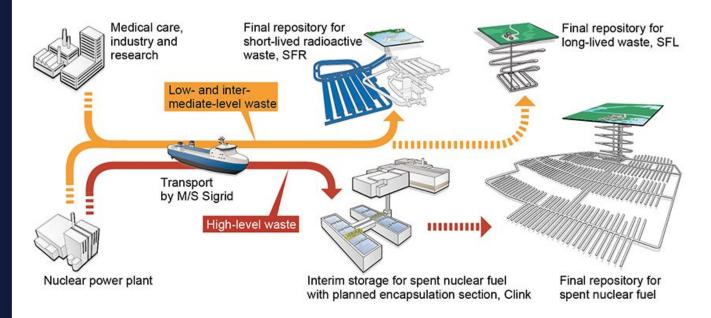
Fuel failure

Fuel removal

SNF reprocessing

BALANCE SAFETY, SAFEGUARDS AND SECURITY WITH THE INTENT OF GEN-IV

- Identifying pathways and obstacles to utilizing the potential of a breeder
- Designing reactor technology and processes ensuring non-proliferation
- Finding appropriate canisters for spent fuel removal and transportation
- Developing reliable gas-cooling systems for SNF


- 1. Introduction to Blykalla
- 2. Blykalla's fuel and core technology
- 3. Spent fuel on-site management
- 4. Framework for spent fuel management in Sweden
- 5. Blykalla's scenarios for spent fuel management

Licensee responsible for developing a credible SNF management plan, including compliance with the Swedish waste management framework

Blykalla

SNF MANAGEMENT IN SWEDEN

- 1. Introduction to Blykalla
- 2. Blykalla's fuel and core technology
- 3. Spent fuel on-site management
- 4. Framework for spent fuel management in Sweden
- 5. Blykalla's scenarios for spent fuel management

THREE BACK-END SCENARIOS

Investigating three solutions, since SNF management will have to be valid in other markets as well

Direct disposal

Encapsulation of SNF, and direct disposal as nitride.

Conversion & disposal

Coversion of nitride to oxide and sintering into waste pucks to assure chemical stability.

Disposal in some capsulated form.

Reprocessing & vitrification

Reprocessing to utilize all fissile materials in fresh nuclear fuel.

Vitrification of fission products and MA prior to disposal.

Irradiated nitride fuel differs from irradiated LWR fuel, impacting back-end strategies

- Higher enrichment
- Higher density
- Increased criticality risk at equal volumes
- Spent fuel must be handled in smaller volumes and packages
- Higher solubility at lower temperatures, i.e. easier to reprocess
- Multi-reprocessing possible
- Low TRU decay heat in long term storage, i.e. compact disposal

BACK-END R&D WORK

Active participation in international back-end RnD programmes is a valuable asset in the strategic planning of SNF management

ASGARD 2012-2016

Advanced fuels for Gen IV reactors: reprocessing, dissolution, fabrication, recyclability, and large-scale feasibility, with European collaboration and E&T focus.

FREDMANS 2022-2026

Fuel recycling and advanced UN fuel manufacturing for safe and efficient nuclear power generation

WISARD 2025-2028

Assessing advanced reactor fuel cycle impacts on back-end solutions, led by OECD/NEA and with active participation from national nuclear organizations and industry

Thank you!