The *"Baghdad Atlas"* as a validation tool for evaluated nuclear data libraries

Aaron M. Hurst amhurst@berkeley.edu

Department of Nuclear Engineering University of California, Berkeley

Technical Meeting on Nuclear Data Retrieval, Dissemination, and Data Portals IAEA Headquarters, Vienna, Austria

November 11 – 15, 2024

Table of Contents

æ

★ 문 ► ★ 문 ►

Aaron M. Hurst amhurst@berkeley.edu IAEA TM Nuclear Data Portals 2024

The Baghdad IRT-M Reactor and $(n, n'\gamma)$ data

https://nucleardata.berkeley.edu/atlas/

- Compilation of energy-integrated inelastic neutron-scattering (n, n'γ) data disseminated in book format.
- ~ 7000 γ rays (E_γ and BR) from 105 samples: 76 natural and 29 isotopically-enriched targets.
- Ge(Li) viewing filtered fast-neutron beam line at the IRT-M Reactor: NRI, Baghdad, Iraq.
- Unique ⁵⁶Fe 847-keV $2_1^+ \rightarrow 0_{gs}^+ \gamma$ -ray normalization.
- Out-of-print book (out-of-print reactor!).
- Now Digitized database, open source dissemination.

< ロ > < 同 > < 回 > < 回 >

Project maintained on GitHub:

github.com/AaronMHurst/baghdad_atlas

A.M. Hurst et al., NIMA 995, 165095 (2021).

Building the project

https://github.com/AaronMHurst/baghdad_atlas

baghdad_atlas (here)	Ŕ	An O Unmatch
P main → P 1 Branch © 0 Tags	Q. Go to file E Add file	↔ Code +
S AaronMHurst Added LICENSE documentation	DecBd83 - 6 months ag	o 💿 15 Commits
CSV_DATA	Initial commit of CSV-style datasets	7 months ago
book	Initial commit of reference articles	7 months ago
adument	Updated HTML document	6 months ago
inotebook_analysis	Initial commit of building and utility software	7 months ago
sql_codes	Initial commit of building and utility software	7 months ago
src 🖿	Initial commit of building and utility software	7 months ago
2001.11140v3.pdf	Initial commit of reference articles	7 months ago
Fe_cs_query.png	Added Fe images	6 months ago
Fe_spectrum.png	Added Fe images	6 months ago
C LICENSE	Added LICENSE documentation	6 months ago
C README.md	Updated README document	6 months ago
D opt_and_para_fit.png	Figure illustrating flux at the Baghdad Research reactor	6 months ago

The project is activated in the second seco

- clone and make project as described in README.
- Build process automatically detects OS and Python version in build environment.
- Creates a SQLite database object: atlas_baghdad_py3.db

Overview

Validation

SQL schema and transactions

https://nucleardata.berkeley.edu/atlas/schema.html

```
CREATE TABLE nucleus (
     id INTEGER PRIMARY KEY,
    nuc symb CHAR(5).
                                      /* Chemical symbol (with mass number for enriched isotopes) of the irradiated sample */
     nuc Z INTEGER
                                      /* Atomic number of irradiated sample *.
     energy gamma FLOAT.
                                      /* Gamma-ray transition energy [keV] */
    d energy gamma FLOAT,
intensity gamma FLOAT,
d intensity gamma FLOAT,
                                      /* Uncertainty: Gamma-ray transition energy [keV] */
                                      /* Gamma-ray transition intensity [RI] *
                                     transition type CHAR(2),
residual CHAR(16),
residual type CHAR(2),
energy_ex FLOAT,
     ex type CHAR(2).
     sample CHAR(1)
CREATE TABLE sample (
    id INTEGER PRI
flag CHAR(1),
element TEXT,
                    RIMARY KEY,
                                      /* Meta-data identification flag: X */
/* Name of element/enriched isotope */
     Z INTEGER.
                                      /* Atomic number of element/enriched isotope */
/* Chemical symbol for element/enriched isotope */
     symbol TEXT.
     N FLOAT
                                      /* Normalization factor for determination of absolute partial gamma-ray cross sections */
     dN FLOAT.
                                      /* Uncertainty: Cross-section normalization factor */
    e_gamma_norm FLOAT,
A INTEGER,
mass FLOAT,
                                      /* Gamma-rav transition energy used for normalization [keV] */
                                     /* atoms ray crossition empty used for normalization lew! //
/ Mass [g] or irrediated sample //
/ Mass [g] or irrediated sample //
// estructment period [h] of irradiated sample i/ sample (b for natural elemental samples) */
// Chemical composition of irrediated sample (/)
     exposure time FLOAT,
     enrichment FLOAT
     sample composition TEXT,
     isotope norm TEXT
                                      /* Isotope used for gamma-ray intensity normalization */
```

- sqlite3 engine: terminal-based front-end to SQLite libraries.
- Evaluate SQL queries interactively, e.g., normalization info.

SELECT <variables> FROM
 WHERE <conditions>;

Batch-mode processing also (for more complicated queries).

Aaron M. Hurst amhurst@berkeley.edu

(base) only SQLite worm Enter ".hel sqLite> .he sqLite> .no sqLite> .no sqLite> SEL > FRD > NHE	rstdankurst- ion 3.29.0 2 p' for usage ader on de column ECT element, M sample RE 2 >= 12 A	office:sql_c D19-07-10 17 hints. Z, A, e_gam AD Z < 45;	odess sqlite3 :32:03 me_norm, N, dS	atlas_beghda , isotope_no	d_py3.db rm	
element	z	A	e_gamna_norm	N	dN	isotope_norm
Magnesium	12	0	1369.0	28.0	3.0	24Ng
Atuminium	13	D	1014.0	28.0	3.0	27A1
Silicon	14	8	1339.0	27.0	2.5	2851
Phosphorus	15	0	1266.9	21.0	3.0	31P
Salfur	16	0	2230.0	15.1	2.0	325
Chlorine	17	8	1228.0	5.2	0.5	3501
Potassium	19	0	2814.9	2.6	0.4	39K
Calcium	20	D	3904.0	2.2	0.4	40Ca
Scandium	21	0	364.0	28.0	4.8	455c
Titanium	22	0	963.0	77.0	8.8	48T1
Vanadium	23	D	329.0	115.0	15.0	51V
Chronium	24	0	1434.0	52.0	6.0	52Cr
Banganese	25	0	858.0	16.8	1.8	55Nn
Iron	26	0	847.0	100.0	0.0	54Ee
Cobelt	27	D	1190.0	33.0	4.0	59Co
Nickel	28	8	1454.0	48.8	5.8	58MI
Copper	29	0	962.0	54.0	6.0	63Cu
Zinc	30	D	992.0	52.0	5.0	64Zn
Gallium	31	8	574.0	27.8	3.8	656a
Gernanium	32	0	596.0	188.9	18.0	746e
Arsenic	33	D	250.0	135.0	44.0	75As
Selenium	34	8	666.0	92.0	18.8	885e
Branine	35	0	276.0	173.0	43.0	81Br
Rubidium	37	D	402.0	65.0	15.0	07F25
Strentium	38	0	1836.0	55.0	6.0	885r
Yttrium	39	0	569.8	48.8	5.8	85Y
Zirconium	40	0	924.0	25.0	3.0	92Zr
Nicbium	41	D	744.0	48.0	5.0	93Mb
Molybdenum	42	0	787.0	33.0	3.0	96Mo
Molybderum	42	92	1509.7	10.032	0.949	92No
Buthenium	44	D	539.0	35.0	6.0	10060.
califer arit						

< ∃⇒

IAEA TM Nuclear Data Portals 2024

More complex SQL transactions

BEGIN TRANSACTION;

```
/*For Linux use the following library:*/
SELECT load_extension('../UDF/sqlite-amalgamation/libsqlitefunctions.so');
```

```
/*For Mac OS X use the following library:*/
/*SELECT load extension('../UDF/sqlite-analgamation/libsqlitefunctions.dylib');*/
```

```
CREATE TEMP TABLE Variables(
Name TEXT PRIMARY KEY,
FeCS FLOAT,
G FeCS FLOAT,
d FeCS FLOAT,
d FeCS FLOAT,
RI FLOAT
```

INSERT OR REPLACE INTO _Variables VALUES ('Constant', 143.0, 1.430, 29.0, 0.290, 100.0);

- For more elaborate SQL transactions it's probably better to run from a script.
- Use data from a class (table).
- Hand-typing in interpreter is long-winded and error prone.
- Examples of SQL scripts bundled with project.
- (1) Normalized ⁵⁶Fe partial γ-ray cross sections.
- (2) γ-ray data information contained in database.

\$ sqlite3 -column -header \$DB < \$SQL_SCRIPT</pre>

(1) Normalized Fe cross sections:

target	residual	E [keV]	dE [keV]	BR	dBR	cross section [mb]	error cs [mb]
Fe	57Fe	122.1	0.2	2.2	8.2	3.146	8.699178937611111
Fe	55Mn	126.8	8.2	1.6	8.2	2.288	8.545861464423967
Fe	54Mn	156.5	0.2	8.4	0.1	0.572	8.184133104038753
Fe	56Mn	211.0	0.3	0.22	8.03	0.3146	8.076882052522028
Fe	57Fe	352.5	0.0	1.6	8.2	2.288	8.545661464423967
Fe	57Fe	367.1	0.2	8.54	8.85	0.7722	8.172158544582351
Fe	53Fe	757.3	0.4	8.1	8.83	0.143	8.851782332894538
Fe	58Fe	810.3	8.2	8.43	8.83	0.6149	8.131873845669285
Fe	56Fe	846.78	0.0	100.0	8.8	143.0	29.0
Fe	Fe	992.8	0.4	0.1	0.03	0.143	0.051782332894530
Fe	56Fe	1037.85	0.0	2.15	0.1	3,8745	8.639688400707719
Fe	54Fe	1130.0	0.3	8.39	8.84	0.5577	8.126741666392705
Fe	54Fe	1152.8	0.4	8.14	8.03	0.2002	8.859865810753768
Fe	Fe	1165.9	9.6	8.68	8.83	0.1144	8.848771485556944
Fe	56Fe	1173.2	9.8	8.25	8.1	0.3575	8.160328568882779
Fe	56Fe	1175.0	0.8	8.15	0.1	0.2145	8.14946989663474
Fe	Fe	1213.0	0.7	8.05	8.03	0.0858	8.846294384188658
Fe	56Fe	1238.3	0.2	10.5	8.5	15.015	3.12781872876291
Fe	56Fe	1271.9	1.0	8.05	8.82	0.0715	8.832865713776555

(2) Some general database stats:

(base) amburst@amburst-office:sql_codes\$ sqlite3 -column -header atlas_baghdad_py3.db < getCountingStats.sql No. natural (elemental) samples:

< ロ > < 同 > < 三 > < 三 >

IAEA TM Nuclear Data Portals 2024

Pythonic methods for interacting with the data

Si(*n*, *n'γ*)

- Firmly assigned γ rays only.
- γ rays from any Si isotope.

- Jupyter Notebook distributed with project: sql_queries_atlas.ipynb
- Implementation of Pythonic methods for handling the data.

- Firmly assigned γ rays only.
- γ rays from ²⁸Si only:
 nucleus.residual = '28Si'

Reactor neutrons: ²³⁵U fission neutron spectrum

Different empirical relations have been proposed to describe the energy spectrum of reactor neutrons:

Watt:

$$N(E_n) = \sqrt{\frac{2}{\pi e}} \exp(-E_n) \sinh \sqrt{(2E_n)}$$

Modified Watt:

$$N(E_n) = A \exp(-bE_n) \sinh \sqrt{(cE_n)}$$

Maxwellian:

$$N(E_n) = 2\sqrt{\frac{E_n}{\pi k T^3}} \exp\left(\frac{-E_n}{kT}\right)$$

Best-fit parametrizations deduced for $^{\rm 235}{\rm U}:$

 Modified Watt: A = 0.4527, b = 1.036, c = 2.29.

• • = • • = •

Maxwellian:
 kT = 1.290 MeV.

Neutron interactions and contributions to σ_F in ⁵⁶Fe and ¹⁸²W as function of E_n

In ⁵⁶Fe, at $E_n = 25.3$ meV:

$$\sigma_F(n+^{56}\operatorname{Fe};E_n)=\sigma(n,\gamma).$$

In ${}^{182}W$, at $E_n = 25.3$ meV:

$$\sigma_F(n+^{182}W;E_n)=\sigma(n,\gamma).$$

Neutron interactions and contributions to σ_F in ⁵⁶Fe and ¹⁸²W as function of E_n

In ⁵⁶Fe, at $E_n = 14$ MeV:

$$\sigma_F(n+{}^{56}\mathsf{Fe}; E_n) = \sigma(n, \gamma) + \sigma(n, n') + \sigma(n, p) + \sigma(n, 2n) + \sigma(n, 2p).$$

In ¹⁸²W, at $E_n = 14$ MeV:

$$\sigma_F(n+^{182} W; E_n) = \sigma(n,\gamma) + \sigma(n,n') + \sigma(n,np) + \sigma(n,2n) + \sigma(n,3n) + \sigma(n,4n) + \sigma(n,2np).$$

Neutron interactions and contributions to σ_F in ⁵⁶Fe and ¹⁸²W as function of E_n

In 56 Fe, at $E_n=0.86\sim 10$ MeV:

$$\sigma_F(n+^{56} \operatorname{Fe}; E_n) = \sigma(n,\gamma) + \sigma(n,n') + \sigma(n,p).$$

In 182 W, at $E_n = 0.10 \sim 10$ MeV:

$$\sigma_F(n+^{182}W;E_n)=\sigma(n,\gamma)+\sigma(n,n')+\sigma(n,2n).$$

Characterization the IRT-M Baghdad Reactor neutron flux

 $E_n < 1.5$ MeV (Maxwellian):

$$\phi_1(E_n) = 2A_1 \sqrt{\left(\frac{E_n}{\pi k T^3}\right)} \exp\left(\frac{E_n}{k T}\right).$$

 $E_n \ge 1.5$ MeV (Exponential):

$$\phi_2(E_n) = A_2 \exp(-\beta E_n).$$

Overall fit according to parametrization of IRT-M data:

$$\phi(E_n) = \phi_1(E_n) + \left[\frac{1 + \tanh[K(E_n - 1.5)]}{2}\right](\phi_2(E_n) - \phi_1(E_n)).$$

 $\phi(E_n \ll 1.5 \text{ MeV}) \rightarrow \phi_1(E_n);$ $\phi(E_n \gg 1.5 \text{ MeV}) \rightarrow \phi_2(E_n).$

Experimental Fe $(n, n'\gamma)$ γ -ray spectrum at the IRT-M

https://github.com/AaronMHurst/baghdad_atlas

Most important γ rays in $^{56}{\rm Fe}$ from integral fission-neutron spectrum:

E_{γ} [keV]	$J_i^{\pi_i} o J_f^{\pi_f}$	I_{γ}	B _A
846.8	$\mathbf{2^+_1} \rightarrow \mathbf{0^+_{gs}}$	100	1.0
1238.3	$4_1^+ \rightarrow 2_1^+$	10.5(5)	0.105(5)
1810.8	$2^+_2 \rightarrow 2^+_1$	6.9(4)	0.069(4)

$$B_A = \frac{I_{\gamma}(E_{\gamma})}{I_{\gamma}(E_{\gamma} = 846.8)} = \frac{I_{\gamma}(E_{\gamma})}{100}$$

- Well-characterized flux should reproduce measured experimental data.
- Determine flux-weighted cross section ($\langle \sigma_{\gamma} \rangle$) by convolving $\sigma_{\gamma}(E_n)$ with $\phi(E_n)$ and compare to corresponding *Baghdad Atlas* branching ratios.
- Parameterized Baghdad Reactor neutron-flux distribution yields $\langle \sigma_{\gamma} \rangle$ values that reproduces measured integral B_A to within $\sim 1.5\sigma$.

Determination of $\langle \sigma_{\gamma}(E_{\gamma}=$ 846.8 keV) \rangle in ⁵⁶Fe

$$\langle \sigma_{\gamma}(E_{\gamma}) \rangle = \frac{\int_{E_n=0.862}^{E_n=10} \phi(E_n) \sigma_{\gamma}(E_n) W_{\gamma}(\theta = 90^\circ; E_n) dE_n}{\int_{E_n=0}^{E_n=+\infty} \phi(E_n) dE_n}$$

- $\phi(E_n)$: Parameterized and adjusted for kT ($\phi(E_n \ll 1.5 \text{ MeV}) \rightarrow Maxwellian$; $\phi(E_n \gg 1.5 \text{ MeV}) \rightarrow \text{exponential}$).
- σ_γ(E_n): γ-ray production data as function of E_n from reaction model, e.g., CoH₃, EMPIRE, or a nuclear data library, e.g., ENDF.
- $W_{\gamma}(\theta = 90^{\circ}; E_n)$: Experimental anisotropy-attenuation coefficients, a_2 and a_4 (not always available!).

Neutron-flux optimization: kT-adjustment to ⁵⁶Fe data

Adjust kT in χ^2 minimization to find optimal flux:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} [B_{A_i} - B_{kT_i}] [V_{ij}^{-1}] [B_{A_j} - B_{kT_j}].$$

or in matrix notation:

$$\chi^2 = (\boldsymbol{B}_{\boldsymbol{A}} - \boldsymbol{B}_{\boldsymbol{kT}}) \boldsymbol{V}^{-1} (\widetilde{\boldsymbol{B}}_{\boldsymbol{A}} - \widetilde{\boldsymbol{B}}_{\boldsymbol{kT}}).$$

- $V \Rightarrow$ covariance matrix $\therefore I_{\gamma}$ are correlated.
- $N = 3 \Rightarrow$ number of γ rays.
- ndf = 3 1 = 2.
- $\chi^2/\text{ndf} \approx 0.35$ for ndf = 2.
- Correlation coefficient in range $0 < \rho_{ij} \lesssim 0.75$ reproduces expected χ^2 /ndf consistent with kT = 0.155(30) MeV (cf. kT = 1.290 MeV (of pure Maxwellian ²³⁵U fission.)

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Reminder: the uncorrelated χ^2 :

$$\chi^{2} = \sum_{i=1}^{N} \frac{[y_{i} - f(x_{i})]^{2}}{\sigma_{i}^{2}}.$$

Normalized fits cf. standard ²³⁵U neutron-flux distributions

Flux must satisfy normalization condition:

Expectation energies:

- Watt $\langle E_n \rangle = 2.00$ MeV.
- Modified Watt $\langle E_n \rangle = 1.98$ MeV.
- Maxwellian $\langle E_n \rangle = 1.94$ MeV.
- Parameterized Flux at IRT-M $\langle E_n \rangle = 0.88$ MeV.

< ロ > < 同 > < 三 > < 三 >

• Optimized Flux at IRT-M $\langle E_n \rangle = 0.63$ MeV.

kT-adjusted optimized neutron flux used to deduce flux-weighted quantities.

Optimized flux-weighted cross sections

Values for $\langle \sigma_{\gamma} \rangle$ and $\langle \sigma_{\gamma} \rangle_W$ deduced according to fitted flux using compound function with optimized kT = 0.155 MeV:

E_{γ} [keV]	B _A	B_{kT}	$\langle \sigma_\gamma \rangle \ [{\rm mb}]$	$\langle \sigma_{\gamma} \rangle_W$ [mb]	$\langle \sigma_{\gamma} \rangle_{\rm FRM}$ [mb]	$\langle \sigma_\gamma \rangle_S [{ m mb}]$
846.8	1.0	1.0	166(34)	143(29)	586(41)	521(106)
1238.3	0.105(5)	0.096(27)	15.9(31)	13.7(27)	58(5)	49.9(98)
1810.8	0.069(4)	0.061(18)	10.0(21)	8.7(18)	37(3)	31.7(66)

Our cross sections for ^{56}Fe are consistent with the recent FRM-II measurement* upon scaling by $\langle E_n\rangle$ at the two facilities.

*Z. Ilic et al., J. Radioanal. Nucl. Chem. 325, 641 (2020).

A ≥ ►

Why not take σ_{γ} directly from ENDF rather than a model?

- σ_γ cannot be extracted directly from ENDF.
- Results indicate: $\frac{\langle \sigma_{lev}^{CoH} \rangle}{\langle \sigma_{tot}^{CoH} \rangle} \approx \frac{\langle \sigma_{lev}^{ENDF} \rangle}{\langle \sigma_{tot}^{ENDF} \rangle}.$
- Reasonable to expect ratios of partial γ -ray production cross section to total inelastic cross section to also be in agreement, i.e., $\langle \sigma_{\gamma}^{\text{ENDF}} \rangle \approx \langle \sigma_{\text{tot}}^{\text{ENDF}} \rangle \frac{\langle \sigma_{\gamma}^{\text{CoH}} \rangle}{\langle \sigma^{\text{CoH}} \rangle}$.

A (1) > A (2) > A

Emanuel Chimanski's method for σ_{γ} extraction from ENDF

New script to get (n,n'g) from GNDS:¹⁶O example mt Ethreshold [MeV] 51 643 6.52 52 For neutron incident energy = 8 MeV 53 7.35 • mt: 54, 53, 52, 51 54 7.57 55 9.43 $\sigma(n, n'\gamma_{2,0}) = \sigma_{mt54} B_{4,3} B_{3,2} B_{2,0} + \sigma_{mt53} B_{3,2} B_{2,0} + \sigma_{mt52} B_{2,0}$ 56 11 65 22.0 gamma-ray transition of interest (from 2nd excited state to the GS) 11.78 $B_{m,n}$ branching ratio from 91 10.19 level m to level n Discrete contribution: $\sigma^D(n, n'\gamma_{i,f}) = \sigma_i(n, n')B_{i,f} + \sum_l^L \sigma_l(n, n') \sum_{i=\ell+1}^l T_{l,j}(1 - \delta_{l,j})$ $T_{l,j} = B_{l,j} \prod_{k< j}^{k < j} B_{k+1,k}$ The emission probability of a particular gamma-ray P_{γ} per reaction event Total production: with energy E_{γ} can be obtained with $\sigma(n, n'\gamma_{i,f}) = \sigma^D(n, n'\gamma_{i,f}) + P_{\gamma_{i,f}} \sigma_{mt91}(n, n')$ $P_{\gamma} = \mu \frac{\int dE P(E)\delta(E - E_{\gamma})}{\int dE P(E)}$ where P(E) is the outgoing photon distribution Brookhaven

and μ the averaged number of gamma emisions

< ロ > < 同 > < 三 > < 三 >

Aaron M. Hurst amhurst@berkelev.edu IAEA TM Nuclear Data Portals 2024

Determination of $\langle \sigma_{\gamma} \rangle$ derived from ENDF for ⁵⁶Fe γ rays

Values of $\langle \sigma_{\gamma} \rangle$ deduced directly from ENDF are consistent with value from well-tuned CoH₃ reaction-model calculation.

Flux-weighted validation for ${}^{28}Si(n, n'\gamma)$: 1779 keV

Source	$\langle \sigma_\gamma \rangle \; [{\rm mb}]$	$\langle \sigma_{\rm lev} \rangle$ [mb]	$\frac{\langle \sigma_{\rm lev} \rangle}{\langle \sigma_{\rm tot} \rangle}$
CoH	55.69	53.45	0.957
ENDF (estimate)	48.17	46.59	0.965
ENDF (derived)	49.40	_	_
Baghdad Atlas	47.1(94)	_	_

Integral measurement in agreement with 3 different validation results.

Flux-weighted validation for ${}^{32}S(n, n'\gamma)$: 2231 keV

Overview

Source	$\langle \sigma_\gamma \rangle \; [{\rm mb}]$	$\langle \sigma_{\rm tot} \rangle$ [mb]	$\langle \sigma_{\rm lev} \rangle$ [mb]	$\frac{\langle \sigma_{\rm lev} \rangle}{\langle \sigma_{\rm tot} \rangle}$
CoH	26.57	27.91	23.95	0.858
EMPIRE	26.49	28.80	23.78	0.890
ENDF (estimate)	21.67	22.76	19.98	0.878
ENDF (derived)	21.79	_	_	_
Baghdad Atlas	25.0(60)	_	_	_

Integral measurement in agreement with 4 different validation results.

Aaron M. Hurst amhurst@berkeley.edu IAEA TM Nuclear Data Portals 2024

	CoH	ENDF (derived)	Baghdad Atlas
$\langle \sigma_{\gamma} \rangle \; [mb]$	30.60	28.06	23.9(56)

- 740-keV γ ray resolved from doublet.
- 740-keV γ ray deexcites 862-keV level.

Integral measurement in agreement with 2 different validation results.

ヘロマ ヘヨマ ヘヨマ

э

Flux-weighted validation for ${}^{16}O(n, n'\gamma)$: 6129 keV

Derived σ_{γ} (6129) from ENDF

- $\langle \sigma_{\gamma}
 angle = 1.09(50)$ mb (Baghdad Atlas)
- $\langle \sigma_{\gamma} \rangle = 0.533 \text{ mb} (\text{ENDF})$
- ${}^{16}\text{O}$ γ rays hard to measure.
- Flux at energy needed is low.
- ENDF-derived σ_γ especially needed for cases like ¹⁶O which are also quite difficult to model cf. statistical Hauser-Feshbach approach.

Validation using integral data for ²⁸Si, ³²S, ⁵⁶Fe, and ¹⁸⁶W

- Absolute flux-weighted quantities from CoH and ENDF reproduce known absolute integral I_{γ} data from the Baghdad Atlas.
- Normalization transitions and weaker transitions.
- Explore additional isotopes covering broader energy range.
- Gamma-Rays Induced by Neutrons (GRIN): A.M. Hurst, E.V. Chimanski, D.A. Brown, "Validation of evaluated nuclear data for GRIN", LBNL-2001617 (2024).

Neutron flux at the Baghdad Research IRT-M Reactor is well characterized in region $0.862 \le E_n \le 5.0$ MeV.

Validation using FRM-II Reactor flux

- FRM-II: $\langle E_n \rangle = 2.32$ MeV from fit cf. 2.3 MeV [Ilic 2020].
- Validation results for ⁵⁶Fe($n, n'\gamma$); $E_{\gamma} = 846.8 \text{ keV} (2^+_1 \rightarrow 0^+_{gs})$.
- Additional validation datasets from FRM-II: AI, Ti, Cu, In, Ca.

