Berkeley Nuclear Database Projects: Structure and Decay Data

Aaron M. Hurst amhurst@berkeley.edu

Technical Meeting on Nuclear Data Retrieval, Dissemination, and Data Portals IAEA Headquarters, Vienna, Austria

November 11 - 15, 2024

Table of Contents

https://nucleardata.berkeley.edu/databases/

1 paceENSDF

- Decay data from ENSDF
- Coincidence $\gamma \gamma$ and γX -ray data

• • = • • = •

Decay data from ENSDF Coincidence $\gamma - \gamma$ and $\gamma - X$ -ray data

Open-source Python library paceENSDF on GitHub

https://github.com/AaronMHurst/pace_ensdf

- Python Archive of Coincident Emissions from ENSDF.
- Translated 3254 ENSDF-decay datasets to JSON format.
- Converted each ENSDF-decay dataset into RIPL format.
- Generated 2394 JSON-formatted coincidence datasets, i.e., only those containing γ rays.
- Developed suite of Python modules enabling interaction, analysis, and visualization of the **ENSDF-decay** data and derived **coincidence** $\gamma \gamma$ and γX -ray data.
- Docstrings provided for all methods.
- JSON schema keys documented extensively in README.
- 283 unit tests (multiple virtual Python3 environments).
- Installation, testing scripts, and Jupyter Notebooks.
- JSON and RIPL files bundled with software.
- Over 5000 downloads.

ENSDF decay (all)

 \bigcirc

git clone https://github.com/AaronMHurst/pace_ensdf.git

paceENSDF on the Python Package Index (PyPI) repository

https://pypi.org/project/paceENSDF

Search pr	ojects	Q		
paceENSDF(0.4.0 ISDF==0.4.0			
paceENSDF: Python Archive of radioactive-decay data from 1	f Coincident Emissions from ENSDF. Pa the ENSDF archive and corresponding	ackage enables interaction, i coincidence gamma-gamma	manipulation, analysis, and and gamma-X-ray emission	visualization of 15.
Navigation	Project descriptio	n		
Project description	The paceENSDF (Python Arc	chive of Coincident Emissions fr	rom ENSDF) project [HUR2023	is a Python package
Release history	enabling access, manipulati Structure Data File (ENSDF)	ion, analysis, and visualization library [TUL2001]. A total of 32	of the radioactive decay data (54 data sets encompassing α)	rom the Evaluated Nuclear 834), β - (1141), and ϵ/β +
🛓 Download files	(1279) have been extracted Object Notation (JSON) form deexcitation γ rays associat	from the ENSDF archive [TUL20 mat (described below). The JSOI ted with 41,094 levels. Addition	01], parsed and translated int N-formatted data sets constitu ally, we also provide a Referen	o a representative JavaScript te a total of 92,264 ce Input Parameter Library
Project links	[CAP2003] RIPL-translated fi with the analysis toolkit. A s decay data from ENSDF is si	ormat of the corresponding de- schematic illustrating the portion hown in the figure below.	cay-scheme data. These data s on of the nuclear chart of relev	ets are bundled together ance to the aforementioned
🕈 Homepage	12	α . α		-
Statistics	10	ο β ⁻ ε/β ⁺		
GitHub statistics:	9	0		
🚖 Stars: 1	N 6	o 🚽		
P Forks: 0	4	. 🥒		
Open issues: 0				
D Open PRs: 0				
View statistics for this project via Libraries.io 🖾, or by using our p dataset on Google BigQuery 🖄	ablic	0 50 100	150 260 250 A	300

pip install paceENSDF

FreeBSD License

Aaron M. Hurst amhurst@berkeley.edu

A ≥ ▶

Accessing the decay $(\alpha, \beta^-, \text{ and } \epsilon/\beta^+)$ and coincidence $(\gamma - \gamma \text{ and } \gamma - X)$ data using paceENSDF

https://github.com/AaronMHurst/pace_ensdf

```
$ ipython
In [1]: import paceENSDF as pe
In [2]: e = pe.ENSDF()
In [3]: edata = e.load_ensdf() # decay datasets
In [4]: cdata = e.load_pace() # coincidence datasets

    load_ensdf(self)
    Function to assign all 3226 JSON-formatted ENSDF-decay data sets
    (alpha, beta-minus, electron-capture/beta-plus) to a list object
    variable.
    load_pace(self)
    Function to assign all JSON-formatted coincidence-decay data sets
    (gamma/gamma and gamma/X-ray) to a list object variable.
```

Run through Jupyter Notebooks from GitHub:

- Decay data: decay_paceENSDF.ipynb
- Coincidence data: coinc_paceENSDF.ipynb

< ロ > < 同 > < 回 > < 回 >

Supporting docstrings for all methods

Example: help(e.get_levels_and_gammas) method

Help on method get levels and gammas in module paceENSDF.daughter:

- get levels and gammas(list, str, index, **kwargs) method of paceENSDF.paceENSDF.ENSDF instance level energies, descitation gamma rays, and associated properties observed in the residual daughter nucleus following radioactive-decay processes according to alpha, beta-minus, and electron-capture/beta-plus

(i) Median-symmetrized values are adopted for gamma-ray mixing ratios whereupon asymmetric quantities are encountered in the source ENSOE data set.

(ii) Gamma-ray intensities have not been normalized (i.e., these are the raw values from the RI field of the ENSOF Gamma record). For absolute intensities refer to methods from the Normalization class.

(iii) Total internal-conversion coefficients (where given) are calculated values obtained using the BrIcc code:

[2008Ki07] - T.Kibedi et al., Nucl. Instrum, Methods Phys. Res. Sect. A 589, 202 (2008).

- Arguments:
 - list: A list of ENSOF-decay data JSON objects

 - index: An integer object associated with the decay index of the parent state, where: 0: Ground-state decay
 - >= 1: Isomer decay.
 - kwarps: An additional keyword argument is preded for the appropriate radioactive-decay mode:

mode='A' : Alpha decay mode='BN' : Beta-minus decay mode='ECBP' : Electron-capture/beta-plus decay

Only the above keyword arguments (case insensitive) are

A list object containing levels, gammas, and associated decay-scheme properties of the residual nucleus populated following radioactive decay. The list elements are:

- [8]: Level index corresponding to initial level (int):
- Level index corresponding to final level (int);
- [2]: Associated initial level energy in keV (float):
- [3]: Associated final level energy in keY (float); [4]: Number of campas associated with initial level (int):
- [5]: Index corresponding to gamma-ray number: 0 for first gamma.
- 1 for second gamma, etc. (int);
- (6): Deexcitation camma-ray energy in key (float)
- [7]: Deexcitation gamma-ray energy uncertainty (float);
- [8]: Raw gamma-ray intensity (float);
- [9]: Ray gamma-ray intensity uncertainty (float): [10]: Gamma-ray multipolarity (str);
- [111]: Gamma-ray mixing ratio (float). The median symmetrized value is given where relevant. [12]: Gamma-ray mixing ratio uncertainty (float). The median
- symmetrized value is given where relevant
- [13]: Mixing-ratio flag to indicate its sign (int). Only permitted integers are:
 - 0: No sign given for mixing ratio:
 - 1: Positive-signed mixing ratio; -1: Nepative-signed mixing ratio
- [14]: BrIcc-calculated total internal-conversion coefficient
- [15]: Total internal-conversion coefficient uncertainty (float).
- Examples:
 - get levels and gammas(edata, "Ra226", 0.moden"A")
 - get levels and gammas(edata, "Co69",0,mode="8M"
 - get_levels and gammas(edata, "V58", 0, mode="ECBP")

\$ ipython

- [1]: import paceENSDF as pe
- [2]: e = pe.ENSDF()
- [3]: help(e) # Method resolution order In
- In [4]: help(e.get_levels_and_gammas)

Docstrings are provided for all paceENSDF methods with the following general structure[.]

- Function description.
- Any special notes and/or references.
- Arguments passed to the function.

< ロ > < 同 > < 三 > < 三 >

- What the function returns.
- Examples of function use.

Aaron M. Hurst amhurst@berkelev.edu

Manipulating the ENSDF levels

Example: Properties of levels in ¹⁵⁵Tb following ¹⁵⁵Dy ϵ decay

Find isomers in levels following $^{155}\text{Dy} + \epsilon \rightarrow ^{155}\text{Tb}$

The returned quantities are explained in the docstrings:

>>> help(e.find isomers)

The halfile information is returned in its 'best' units or in units of 'seconds' depending on the keyword argument

units = "best" units = "seconds"

```
In [20]: # Find all issues: in dupber moleus following radioactive decy ('het' or 's' units for halfilfe)
issues: a (ind issues(reads, "bylis"), and abs("kBP", unit="best")
for kit = (ind issues(reads, "bylis"), and abs("kBP", unit="best")
for kit = (ind issues(reads, "bylis"), and abs("kBP", unit="best")
for kit = (ind issues(reads, "bylis"), and "bylis"), and "bylis"
for int('larent' = (b), energy = (l) \lob (2) key! (l/2 < (l) \lob (4) (5)",
formative(b), ull), v(l), v(l), v(l), v(l), v(l), v(l))
for energy = (b) a do (40?) (l/2 < lob (2) key = (l/2 < (l/2
```

index = 2; energy = 155.783 ± 0.003 keV; T1/2 = 0.2 ± 0.2 ns index = 3; energy = 226.916 ± 0.003 keV; T1/2 = 0.35 ± 0.03 ns index = 4; energy = 256.028 ± 0.004 keV; T1/2 = 0.55 ± 0.05 ns

Find levels in ¹⁵⁵Tb with multiple J^{π} assignments

Aaron M. Hurst amhurst@berkeley.edu

▶ < Ξ >

Decay data from ENSDF Coincidence $\gamma - \gamma$ and $\gamma - X$ -ray data

Manipulating the ENSDF gammas Example: γ -ray transitions in ¹⁵⁵Tb following ¹⁵⁵Dy ϵ decay

>>> help(e.get levels and gammas)

Levels and gamas associated with daughter following radioactive decay [g = opt]tevel.on dgamas(data). "Oj559.do.doc" #for in ig: print[] print["Tamainis: (g) > vi]; (2) keV >> (3) keV.format[lg0]0],lg(0][1],lg(0][2],lg(0][3])) print["Tamainis: (g) > vi]; (2) keV >> (3) keV.format[lg0]0],lg(0][1],lg(0][2],lg(0][3])) print["Tamainis: vii]; (g) > vi]; (2) keV >> (3) keV.format[lg0]0],lg(0][2])) print["Tamainis: vii]; (g) > vi]; (2) keV >> (3) keV.format[lg0]0],lg(0][2])) print["Tamainis: vii]; (g) > vi]; (1).format[lg0]0[1],lg(0][2])) print["Tamainis: vii]; (g) > vi]; (1).format[lg0]0[1],lg(0][2])) print["Tamainis: vii]; (g) > vi]; (1).format[lg0]0[1],lg(0][2]))

Daughter nucleus: Tb155 Z=65, A=155 Transition: 1 -> 0; 65,4609 keV -> 0,6 keV Gamma-ray energy: 65,459 ± 0.003 keV Gamma-ray nultipolarity: ML+E2 Gamma-ray nultipolarity: ML+E2 Gamma-ray intensity: 2.68 ± 0.005 Raw gamma-ray intensity: 2.68 ± 0.05 Total ICC: 7.58

subshell = 'calc'
subshell = 'sumcalc'
subshell = 'ratio'
subshell = 'expt'
subshell = 'electron'

Refer to the docstrings for more information:

>>> help(e.get levels and gammas subshells)

Level and gamma-decay information as before, with additional information for the calculated atomic # subshell internal conversion coefficients (K to 0 shell) lgs = e.get_levels_and_gammas_subshells(edata, "Dy155",0,mode="ECBP",subshell='calc') #for i in las: print(i) print("Gamma-ray energy: {0} \xb1 {1} keV".format(lgs[0][6],lgs[0][7])) print("Total ICC: {0}", format(los[0][14])) print("K-shell ICC: (0) \xb1 (1)", format(los[0][16],los[0][17])) print("L-shell ICC: {0} \xb1 {1}".format(lgs[0][18].lgs[0][19])) print("M-shell ICC: {0} \xb1 {1}".format(lgs[0][20],lgs[0][21])) print("N-shell ICC: {0} \xb1 {1}".format(lqs[0][22],lqs[0][23])) print("0-shell ICC: {0} \xb1 {1}".format(lgs[0][24],lgs[0][25])) print("P-shell ICC: {0} \xb1 {1}".format(lgs[0][26],lgs[0][27])) print("0-shell ICC: {0} \xb1 {1}".format(lgs[0][28].lgs[0][29])) Daughter nucleus: Tb155 Z=65, A=155 Gamma-ray energy: 65.459 ± 0.003 keV Total ICC: 7.58 K-shell ICC: 6.2 ± 0.09 L-shell ICC: 1.072 ± 0.019 M-shell ICC: 0.238 ± 0.005 N-shell ICC: 0.0546 ± 0.001 0.shell TCC: 0.00816 + 0.00014

< E > < E >

P-shell IC: 0.000464 ± 7e-06 0-shell IC: 0.0 ± 0.0 Aaron M. Hurst amhurst@berkeley.edu

IAEA TM Nuclear Data Portals 2024

Decay data from ENSDF Coincidence $\gamma - \gamma$ and $\gamma - X$ -ray data

Querying the ENSDF data

Superallowed transitions in ϵ/β^+ and first-forbidden transitions in β^- decay

Transition	$\log(ft)$	1
SA	3.5	0
А	4 - 7.5	0
1^{st} F	6 – 9	1
2 nd F	10 - 13	2
3 rd F	14 - 20	3
4 th F	pprox 23	4

- Angular momentum selection rules for firm J^π assignments.
- Examine trends and anomalies.

paceENSDF Decay data from ENSDF BEApR

Hindrance factors in α decay

- Low-lying levels populated in α decay of ²²⁶Ra \rightarrow ²²²Rn.
- ۲ Variance and correlation between I_{α} and hindrance factors.
- ۰ Negative correlation.

$$V = \begin{pmatrix} 14.91 & -80.80 \\ -80.80 & 1368.72 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & -0.57 \\ -0.57 & 1 \end{pmatrix}$$

Data needed for coincidence calculations

• Each transition is described by 3 quantities: Γ_{γ} , Γ_{e} , and Γ_{T} ,

$$\Gamma_{T} = \Gamma_{\gamma} + \Gamma_{e} = \Gamma_{\gamma} (1 + \alpha), \tag{1}$$

where $\alpha = \Gamma_e / \Gamma_\gamma$ [T. Kibedi, Brlcc (2008)].

 Individual gamma-ray (γ_i), internal-conversion-electron (ē_i), and total transition (T_i) branching ratios (b) are normalized to the sum of all (N) total-transition intensities deexciting a given level:

$$b_{\gamma_i} = \frac{\Gamma_{\gamma_i}}{\sum\limits_{i=1}^{N} \Gamma_{T_i}}; \quad b_{\bar{e}_i} = \frac{\Gamma_{e_i}}{\sum\limits_{i=1}^{N} \Gamma_{T_i}}; \quad b_{T_i} = \frac{\Gamma_{T_i}}{\sum\limits_{i=1}^{N} \Gamma_{T_i}}.$$
 (2)

- K-shell electron contribution for each transition above E_{K} : $\Gamma_{e_{K}} = \Gamma_{\gamma} \alpha_{K}$.
- X-ray intensity contribution from each $E_{\gamma} > E_{K}$, e.g., K_{α} subshell:

$$I_{XK_{\alpha_i}} = f_{K_{\alpha_i}} \Gamma_{e_K}.$$
 (3)

where i = 1, 2, or 3, and $f_{K_{\alpha_i}}$ is the X-ray BR [R.B. Firestone, "Table of *Isotopes*", 8th Ed. (1996)]. Total projection $I_{XK_{\alpha_i}}$ is given by sum over all transitions with $E_{\gamma} > E_K$. Similar for K_{β} subshell.

Decay data from ENSDF Coincidence $\gamma - \gamma$ and $\gamma - X$ -ray data

Hypothetical decay scheme: Coincidence calculation

3

Decay data from ENSDF Coincidence $\gamma - \gamma$ and $\gamma - X$ -ray data

Hypothetical decay scheme: Coincidence calculation

EP9 Web of Conferences 264, 18082 (2023) ND2822 https://doi.org/10.1051/spjconf/202328418002

A decay database of coincident $\gamma - \gamma$ and $\gamma - X$ -ray branching ratios for in-field spectroscopy applications

A.M. Harsch^{1,*}, B.D. Piersen², B.C. Archambaull², L.A. Bernstein^{1,3}, and S.M. Tamoos¹ ¹Department of Nuclear Engineering, University of California, Bedicely, California, 94730, USA ¹Pache Northwest Nuclear Laboratory, Richard, Washington, 2023, USA ¹Nuclear Science Division, Lawrence, Bedickey Statusal Laboratory, Brithely, California, 94730, USA

Address: Control tables providences in these results also devide them to work in provide the sector of the sector

- Two parallel cascade paths between levels 3 and 1:
 - Path 1: T₃₁.
 Path 2: T₃₂T₂₁.
- Need to combine parallel paths to correctly determine γ₁₀/γ₄₃ coincidence intensity:

$$\begin{aligned} \gamma_{10} - \gamma_{43} &= b_{\gamma_{10}} b_{\tau_{31}} \Gamma_{\gamma_{43}} + b_{\gamma_{10}} b_{\tau_{32}} b_{\tau_{21}} \Gamma_{\tau_{43}} \\ &= b_{\gamma_{10}} \Gamma_{\gamma_{43}} (b_{\tau_{31}} + b_{\tau_{32}} b_{\tau_{21}}). \end{aligned}$$

Hypothetical decay scheme: Coincidence calculation

イロト イポト イヨト ・

Decay data from ENSDF Coincidence $\gamma - \gamma$ and $\gamma - X$ -ray data

The first database with $\gamma - \gamma$ and $\gamma - X$ -ray coincidence energies and intensities

$\gamma - \gamma$ data

"decavCoincidences": | "gammaXrayCoincidences": | "gammaEnergyGate": 347.14. "gammaEnergyCoincidence": 826.1. "gammaEnergy": 1332.492, "unitEnergy": "keV", "levelIndexInitial": 1, "gammaGateLevelIndexInitial": 3. "levelIndexFinal": 0. "gammaGateLevelIndexFinal": 2, "XravEnergy": 7,478. "gammaGateLevelEnergyInitial": 2505.748, "gammaGateLevelEnergyFinal": 2158.612, "gammaCoincidenceLevelIndexInitial": 2. "gammaCoincidenceLevelIndexFinal": 1, "unitEnergy": "keV", "gammaCoincidenceLevelEnergvInitial": 2158.612. "gammaCoincidenceLevelEnergyFinal": 1332.508, "absoluteCoincidenceIntensity": 0.806475800590701888. "dAbsoluteCoincidenceIntensity": 0.0007640713835275946. "gannaEnergy": 1332.492, "levelIndexInitial": 1. "unitIntensity": "percent", "levelIndexFinal": 0. "numberParallelCascadePaths": 1. "XrayEnergy": 7.461, "coincidenceCascadeSequences": ["pathNumber": 0. "indexedTransitionSequence": ["unitEnergy": "keV", "gammaEnergy": 1332.492, "levelIndexInitial": 1. "levelIndexFinal": 0. "XrayEnergy": 8.265, "gammaGateLevelIsomer": true, "gammaGateLevelHalfLifeBest": 3.3. "dGammaGateLevelHalfLifeBest": 1.0, "unitGammaGateLevelHalfLifeBest": "ps", "unitEnergy": "keV", "gammaGateLevelHalfLifeConverted": 3.299999999999999997e-12. "unitIntensity": "percent" "dGammaGateLevelHalfLifeConverted": 1e-12, "unitGammaGateLevelHalfLifeConverted": "s"

$\gamma - X$ data

'teveInderint:1+': 1, 'teveInderint:0': 0, 'tabeXiveYint:10': 0': 0': 0': 0.0036023243602506413, 'babeXiveYintian': 'Aulpha!', 'babeXiveYintian': Aulpha!', 'dabeauteGancienceIntensityGammaKray': 0.003172531750774979, 'unifientry': 'percent' 'gammaEnergy': 1323.492, 'teveInderintia': 0, 'teveInderintia': 1, 'teveInderintia': 0, 'babeXiveYinteGancienceIntensityGammaKray': 0.0018311815538608442, 'babeXiveYinteGancienceIntensityGammaKray': 0.0018311815538608442, 'babeXiveYinteGancienceIntensityGammaKray': 0.0018311815538608442, 'babeXiveYinteGancienceIntensityGammaKray': 0.0018311815538608442, 'babeXiveYinteGancienceIntensityGammaKray': 0.0018321815538608442, 'babeXiveYinteGancienceIntensityGammaKray': 0.00043227892419010094, 'dabeSuteGancienceIntensityGammaKray': 0.000432789241901094, 'dabeSut

< ロ > < 同 > < 三 > < 三 >

... for every coincidence pair in every decay scheme.

paceENSDFDecay data from ENSDFBEApRCoincidence $\gamma - \gamma$ and $\gamma - X$ -ray data

Parallel paths in γ -ray cascades

>>> help(e.show cascades)

```
In [3]: # Show the cascade gamma-ray sequence between the 3->2 and 1->0 transitions in 60Ni following
        # 60Co beta-minus decay (G.S.)
        e.show cascades(cdata, "BM", "Co60", 0, 3, 2, 1, 0)
        Cascade sequence between coincidence gammas: g(347.14 keV)-g(1332.492 keV):
        q(3 [2505.748 keV] -> 2 [2158.612 keV]) - q(1 [1332.508 keV] -> 0 [0.0 keV])
        Path number 1:
        Transition sequence: 3 -> 2: g(347.14 keV) [2505.748 keV -> 2158.612 keV]
        Transition sequence: 2 -> 1: g(826.1 keV) [2158.612 keV -> 1332.508 keV]
        Transition sequence: 1 -> 0: g(1332.492 keV) [1332.508 keV -> 0.0 keV]
Out[3]: [[(3, 2), (2, 1), (1, 0)]]
In [4]: # Show the cascade gamma-ray sequence between the 9->6 and 1->0 transitions in 147Pm following
        # 147Nd beta-minus decay (G.S.)
        e.show cascades(cdata, "BM", "Nd147", 0, 9, 6, 1, 0)
        Cascade sequence between coincidence gammas: g(53.1 keV)-g(91.105 keV):
        g(9 [685.899 keV] -> 6 [632.85 keV]) - g(1 [91.1051 keV] -> 0 [0.0 keV])
        Path number 1:
        Transition sequence: 9 -> 6: g(53.1 keV) [685.899 keV -> 632.85 keV]
        Transition sequence: 6 -> 3: g(222.27 keV) [632.85 keV -> 410.515 keV]
        Transition sequence: 3 -> 1: g(319.41 keV) [410.515 keV -> 91.1051 keV]
        Transition sequence: 1 -> 0: g(91.105 keV) [91.1051 keV -> 0.0 keV]
        Path number 2:
        Transition sequence: 9 -> 6: g(53.1 keV) [685.899 keV -> 632.85 keV]
        Transition sequence: 6 -> 1: g(541.79 keV) [632.85 keV -> 91.1051 keV]
        Transition sequence: 1 -> 0: q(91.105 keV) [91.1051 keV -> 0.0 keV]
```

Out[4]: [[(9, 6), (6, 3), (3, 1), (1, 0)], [(9, 6), (6, 1), (1, 0)]]

Allows for γ -ray cascade reconstruction and re-calculation of coincidence intensities if required.

Aaron M. Hurst amhurst@berkeley.edu IAEA TM Nuclear Data Portals 2024

Impose timecut on γ ray cascade following ⁹⁹Mo β^- decay

get_gg_timecut method cf. get_gg method

Remove transitions through the

Inspecting transient-equilibrium coincidences following 9980 beta-minus decay

$$E = 142.7$$
-keV ($J^{\pi} = 1/2^{-}$) 6-h isomer:

 $t = -21,600 \ s$

Include only those transitions through the,

e.g., 6-h isomer:

 $t = 21,600 \ s$

rough the 6-h isomer at E=142.7-keV (level index=2) impose a 21660-s timecut:	
Hout: 1999', 0, -21600) 0)".format(len(gg)))	# Find only coincidences with the 1-we transition (140-51-keV -> 0-keV) in the path of the 6-h isomer; open-get:op_transitiontidats. "MY: "MOD": 0, 1, 0, 21000) for g in qq; print(g[01:12]) print("NNUMBER of coincidences = (0)."format(len(g]))
perfed estic(deces (i.e. es timest)) 9)*femattics(g))) -# transition (i#.3): AdV -# 8:AeV with the same timests 00*6, 0, 1, 6, -13800 9)*femattics(g))	$ \begin{bmatrix} 2,175, [46,351], 1, 6, 146,31], 6, 6, 7, 7, 146,489, 146,311, 6, 6, 6, 61 \\ 166,64, 166,14, 6, 6, 166, 166, 6, 7, 30,161, 7, 64, 66, 166 \\ 166,75, [46,351], 6, 6, 166,16, 6, 7, 30,161, 7, 166,166, 6, 6, 60 \\ 166,75, [46,351], 6, 5, 146,31, 6, 6, 6, 6, 677, 309,125, 6, 6, 60 \\ 166,75, [46,351], 6, 5, 146,31, 6, 6, 6, 6, 167, 309,125, 6, 6, 60 \\ 166,75, [46,351], 6, 5, 146,351, 6, 6, 8, 50,167, 159,125, 6, 6, 60 \\ 166,75, [46,351], 6, 1, 146, 166, 6, 6, 100,167, 100,125, 66, 60 \\ 166,75, [46,351], 6, 146,950, 6, 5, 5, 100,107, 100,125, 86, 60 \\ 166,75, [46,351], 6, 146,950, 6, 5, 5, 100,107, 100,125, 166, 60 \\ 166,75, [46,351], 6, 146,950, 6, 5, 5, 100,107, 100,125, 166, 60 \\ 166,75, [46,31], 6, 146, 146, 146, 146, 146, 146, 146, $
$ \begin{array}{c} 6, 5, 1, 1, 10, 1000, 10, 40, 11, 10, 40, 40 \\ 0, 5, 1, 1, 10, 10, 11, 10, 10, 10, 10, 10, $	<pre>mather of coloridences = 18 * compare these results with all expected coloridences with just the 1-ob transition (i.e. no timecut) *** of a set of the set of th</pre>

[380.13, 140.511, 1, 0, 140.511, 0, [960.734, 140.511, 1, 0, 140.511, 0, [100.134], 140.511, 1, 0, 140.511, [410.27, 140.511], 1, 0, 140.511, 0, [1077.0, 140.511], 1, 0, 140.511, 0. Number of coincidences = 12

[739.5, 140.511, 1, 0, 140.511, 0. [242.29, 140.511, 1, 0, 140.511, 0] [022.972, 140.511, 1, 0, 140.511, 0]

To remove coincidences that as ti

program of the second s

Aaron M. Hurst amhurst@berkeley.edu

IAEA TM Nuclear Data Portals 2024

Decay γ -ray emission from radioactive nuclides Example: ⁶⁰Co \rightarrow ⁶⁰Ni + β^- [$T_{1/2} = 1925.28(14)$ d]

paceENSDF

Delayed γ rays observed in ⁶⁰Ni some time after *n*-interrogation of ⁵⁹Co: Activation signatures from paceENSDF (*Python Archive of Coincident Emissions from ENSDF*).

Decay γ -ray emission from radioactive nuclides Example: ⁶⁰Co \rightarrow ⁶⁰Ni + β^- [$T_{1/2} = 1925.28(14)$ d]

paceENSDF

Delayed γ rays observed in ⁶⁰Ni some time after *n*-interrogation of ⁵⁹Co: Activation signatures from paceENSDF (*Python Archive of Coincident Emissions from ENSDF*).

Decay γ -ray emission from radioactive nuclides Example: ⁶⁰Co \rightarrow ⁶⁰Ni + β^- [$T_{1/2} = 1925.28(14)$ d]

paceENSDF

Delayed γ rays observed in ⁶⁰Ni some time after *n*-interrogation of ⁵⁹Co: Activation signatures from paceENSDF (*Python Archive of Coincident Emissions from ENSDF*).

Forensics applications: Search for $\gamma - \gamma$ and $\gamma - X$ -ray pairs

X-ray singles search:

find_xray

 $\gamma - X$ -ray coincidence search:

find_xray_coinc

	Parent	Decay Index	Ex. Energy	Daughter	Decay Mode	X-ray Label	Photon 1	Photon 2
٥	Dy155	0	0.0	Tb155	electronCoptureBetoPlusDecay	Kbeta2	51.698	668.4
1	Tb164	0	0.0	Dy164	belaMinusDecay	Kbeta1	52.113	688.46
2	Tb164	0	0.0	Dy164	betaMinusDecay	Kbeta3	51.947	688.46
3	L0164	0	0.0	Yb164	electronCoptureBetaPlusDecay	Kalphas	52.389	667.83
4	Tb170	0	0.0	Dy170	betaMinusDecay	Kbeta1	52.113	687.72
5	Th170	0	0.0	Dy170	betaMinusDecay	Kbeta3	51.947	667.72
4	Lu170	0	0.0	10170	electronCaptureBetaPlusDecay	Kalphei	52,389	688.0
7	H#163	0	0.0	Lu163	electronCaptureDetaPlanDecay	Kalphe3	52.443	668.25
8	Lu169	0	0.0	YD169	electronCoptureBetaPlusDecay	Kalphal	52.389	667.93
9	Ho157	0	0.0	Dy157	electronCaptureBetaPlusDecay	Kbeta1	52.113	688.1
20	Ho157	0	0.0	Dy157	electronCaptureEletsPlusDecay	Kbeta3	51.947	669.1
. T	une (/ ind_x)	e toleran ay_coinc(ce to nar cdata, 52	now the	search window to +/- 3.15)	0.15 keV	Photos 1	Photos 2
		,			,			
	Ho157	0	0.0	Dv157	electrosCactureRetoPlusDecay	Kbeta1	62.113	668.1

 γ -ray singles search:

find_gamma

$\gamma-\gamma$ coincidence search

find_gamma_coinc

Out[37]:

	Parent	Decay Index	Ex. Energy	Daughter	Decay Mode	Gamma 1	Gamma 2	
0	Cm243	0	0.0	Pu239	alphaDecay	106.47	392.4	
1	Np239	0	0.0	Pu239	betaMinusDecay	106.47	392.4	

In [38]: # Tune the tolerance to expand the search window to +/- 2.0 keV e.find gamma_coinc(cdata, 106, 392, 2.0)

Out[38]:

	Parent	Decay Index	Ex. Energy	Daughter	Decay Mode	Gamma 1	Gamma 2
0	La135	0	0.0	Ba135	electronCaptureBetaPlusDecay	107.32	392.08
1	Fr227	0	0.0	Ra227	betaMinusDecay	107.306	391.57
2	Cm243	0	0.0	Pu239	alphaDecay	106.47	392.4
3	Nd133	0	0.0	Pr133	electronCaptureBetaPlusDecay	105.1	393.3
4	Kr90	0	0.0	Rb90	betaMinusDecay	106.05	392.6
5	Kr90	0	0.0	Rb90	betaMinusDecay	106.92	392.6
6	T1195	0	0.0	Hg195	electronCaptureBetaPlusDecay	107.0	392.2
7	Np239	0	0.0	Pu239	betaMinusDecay	106.47	392.4
8	Mo104	0	0.0	Tc104	betaMinusDecay	105.2	393.1
9	Cs145	0	0.0	Ba145	betaMinusDecay	105.94	391.15

< ロ > < 回 > < 回 > < 回 > < 回</p>

Search methods for single γ rays and X rays also implemented in addition to $\gamma - \gamma$ and $\gamma - X$ -ray pairs.

IAEA TM Nuclear Data Portals 2024

In [37]: # Find all isotopes containing a coincidence pair of gamma rays # at 186 keV and 392 keV (default tolerance=0.5 keV) e.find gamma coinc(cdata, 106, 392)

BEApR: BErkeley Alpha and proton Radioactivity

https://nucleardata.berkeley.edu/research/betap.html

- Led by J.C. Batchelder.
- Work in progress: Downloadable PDFs -4 ≤ T_Z ≤ +49/2.
- Arranged by T_z and Z/A.
- JSON format developed.
- Python project development underway.
- Built up from many source datasets, e.g.,

[2021Wa16]: M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, "The AME 2020 atomic mass evaluation", Chin. Phys. C 45, 030003 (2021).

Isospin projection $T_z = -3$

Table 1

Observed and predicted β -delayed particle emission from the odd Z, T_z = -3 nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	Q_{ℓ}	Q_{e_P}	$BR_{\beta P}$	Q_{x2p}	Q_{e3p}	Qea	Experimental
24m			22.20/00/4	10.00/2018		10.04/500.0	14.24/2018		
			23.28(50)#	19.98(50)#		19.84(50)#	14.54(50)#		
²⁸ Cl			24.20(53)#	21.64(50)#		20.83(50)#	15.32(50)#	15.10(50)#	
³² K			24.19(40)#	21.74(40)#		21.47(40)#	16.18(40)#	15.50(43)#	
³⁶ Sc			22.60(20)#	20.03(30)#		19.95(30)#	15.29(30)#	15.93(30)#	
40V			21.46(31)#	19.35(30)#		19.95(30)#	15.40(30)#	16.50(30)#	
⁴⁴ Mn		< 105 ns	20.88(30)#	18.09(30)#		17.99(30)#	14.24(30)#	14.03(31)#	[1992Bo07]
⁴⁸ Co			19.74(51)#	18.02(66)#		16.62(50)#	11.75(50)#	12.73(50)#	
⁵² Cu			20.68(61)#	18.17(60)#		18.02(60)#	13.87(60)#	13.71(61)#	
⁵⁶ Ga			21.55(64)#	20.51(52)#		20.86(50)#	16.95(50)#	16.30(51)#	
60As			21.89(50)#	20.83(43)#		22.08(40)#	19.80(40)#	17.33(57)#	

Table 2

Particle emission from odd Z, Tz = -3 nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values

Nuclide	S_p	BR _{1p}	S_{2p}	BR _{2p}	Qα	Experimental	
24 p	-2.78(71)#		-1.24(64)#				
28CI	-1.60(8)*	100%	-2.72(54)#		-8.18(71))#	[2018Mu18]	
32K	-3.38(45)#		-2.74(40)#		-8.71(64)#		
³⁶ Sc	-3.67(36)#		-2.79(36)#		-8.26(50)#		
40 V	-2.68(36)#		-2.14(36)#		-6.11(42)#		
44Mn	-2.14(36)#	100%**	-0.50(36)#		-7.43(42)#	[1992Bo07]	
48Co	-01.57(71)#		0.43(51)#		-8.16(58)#		
⁵² Cu	-2.48(78)#		-1.23(61)#		-6.03(78)#		
⁵⁶ Ga	-3.14(64)#		-2.82(64)#		-4.39(78)#		
60As	-3.44(57)#		-3.32(50)#		-4.23(64)#		

* from [2018Mu18], -3.49(30)# in [2021Wa16]. ** Inferred from Half-life.

- All data can be retrieved/downloaded from website in PDF format.
- Disseminate new format in due course.
- Includes Q values and S energies for all known direct and delayed charged-particle emissions with complete listing of refernces.

Generally different to AME (fine structure to excited states) and ENSDF (update currency).

