
ENSDF Modernization

11/13/2024

Donnie Mason
National Nuclear Data Center

Evaluated Nuclear Structure Data File

2

ENSDF contains recommended
nuclear structure and decay data
for all the known nuclides

Includes:
• Nuclear level properties
• Gamma ray information
• Nuclear radiation and decay data

Legacy Format

3

JSON Schema

4

What is JSON Schema?

● Declarative language for defining JSON data structure and
validation rules.

● Ensures data conforms to specified format.
● Improves data integrity, documentation, and automation.

Key Features

● Validation: Check data types, required fields, range, and format.
● Documentation: Describes expected JSON structure clearly.
● Interoperability: Facilitates data exchange between systems.
● Nested Structures: Supports objects and arrays with constraints.
● Reuse: Allows schema component reuse via $ref.

JSON Schema is the vocabulary that enables JSON data
consistency, validity, and interoperability at scale.

JSON Schema

5

Structure of JSON Schema

● Root object with type, properties, required, etc.
● Defines types for each property (string, integer, boolean).
● Specifies constraints like minimum, maximum, pattern.

Common Keywords

● type: Specifies data type (string, integer, etc.).
● properties: Defines attributes of an object.
● required: Lists mandatory properties.
● enum: Restricts values to a predefined set.
● pattern: Defines regex for string matching.

Use Cases

● API Interfaces: Define request/response formats.
● Data Storage: Validate data in NoSQL database.
● Data Validation: Validate data before processing.

Example: Adult

Pass Fail

Halflife Schema

6

● No Unevaluated Properties
○ Ensures that only the properties listed in the schema are

allowed.
● Quantity

○ $ref to reuse schema components
○ References quantity.json schema for validation

● Properties
○ “comments”

■ References basic-comments.json schema for
validation

○ “unit”
■ Enumerated string
■ A predefined set of valid units (e.g., “h”, “m”, “s”)
■ Ensures the value matches one of the valid unit

options.
○ “measurements”

■ References measurements.json schema for
validation

● Requires the “unit” property
○ Halflife quantities given without a unit are invalid

Quantity Schema

7

● Required properties
○ “value”
○ “uncertainty”
○ “evaluatorInput”

● Properties
○ “value”: number (eg. 1, 2.34, 1e-4, etc.)
○ “evaluatorInput”

■ String: validated against any of
the following regex patterns

○ “isCalculated”
■ Boolean flag

○ “Uncertainty”
■ Object…

Quantity Schema

8

Uncertainty property

● Requires the property type
● Type

○ Enumerated string specifying the uncertainty type
○ “symmetric”, “asymmetric”, “unreported” etc.

Quantity Schema

9

Uncertainty property

● Requires the property type
● Type

○ Enumerated string specifying the uncertainty type
○ “symmetric”, “asymmetric”, “unreported” etc.

● Conditional validation “allOf”
○ If type == “symmetric”

■ Requires
● “value” (number)

Quantity Schema

10

Uncertainty property

● Requires the property type
● Type

○ Enumerated string specifying the uncertainty type
○ “symmetric”, “asymmetric”, “unreported” etc.

● Conditional validation “allOf”
○ If type == “symmetric”

■ Requires
● “value” (number)

○ If type == “asymmetric”
■ Requires

● “upperLimit” (number)
● “lowerLimit” (number)

Quantity Schema

11

Uncertainty property

● Requires the property type
● Type

○ Enumerated string specifying the uncertainty type
○ “symmetric”, “asymmetric”, “unreported” etc.

● Conditional validation “allOf”
○ If type == “symmetric”

■ Requires
● “value” (number)

○ If type == “asymmetric”
■ Requires

● “upperLimit” (number)
● “lowerLimit” (number)

○ If type == “limit”
■ Requires

● “isInclusive” (boolean)
● “limitType” (enumerated string)

Halflife Examples

12

ENSDF API

13

ENSDF Editor

14

Electron for Desktop Application:

● Leverages web technologies (HTML, CSS, JavaScript) for
cross-platform desktop apps.

● Combines Node.js backend with a Chromium frontend to provide
a rich UI experience.

● Open source project maintained by the OpenJS
Foundation

JSON Editing Interface:

● Provides a user-friendly interface to create and modify JSON
data.

● Knowledge of the schema and the expected format for each field
is not needed

Customized UI Components:

● Interactive controls for different data types (e.g., levels, quantities,
comments, measurements).

Cross-Platform:

● Works on major platforms (Windows, macOS, Linux) through
Electron

● Allows evaluators to create datasets in any environment.

ENSDF Editor

15

JSON C++

16

● Link: https://github.com/nlohmann/json
● Header-only: No need for external libraries or complex setup—just include a single header file.
● Simple, Intuitive API: Modern C++11+ syntax for easy parsing, serialization, and manipulation of

JSON data.
● STL Compatibility: Seamless integration with std::vector, std::map, and other C++ containers

for JSON handling.
● Automatic Type Conversion: Effortlessly convert between C++ types (e.g., int, std::string) and

JSON.
● Custom Serialization: Easily define custom serialization logic for your own types using to_json and

from_json functions.

nlohmann/json

https://github.com/nlohmann/json

JSON C++

17

● Link: https://rapidjson.org/
● RapidJSON is small but complete. It supports both SAX and DOM style API. The SAX parser is only a half

thousand lines of code.
● RapidJSON is fast. Its performance can be comparable to strlen(). It also optionally supports SSE2/SSE4.2

for acceleration.
● RapidJSON is self-contained and header-only. It does not depend on external libraries such as BOOST. It

even does not depend on STL.
● RapidJSON is memory-friendly. Each JSON value occupies exactly 16 bytes for most 32/64-bit machines

(excluding text string). By default it uses a fast memory allocator, and the parser allocates memory compactly
during parsing.

● RapidJSON is Unicode-friendly. It supports UTF-8, UTF-16, UTF-32 (LE & BE), and their detection, validation
and transcoding internally. For example, you can read a UTF-8 file and let RapidJSON transcode the JSON
strings into UTF-16 in the DOM. It also supports surrogates and "\u0000" (null character).

https://rapidjson.org/

JSON C++

18

https://github.com/miloyip/nativejson-benchmark#parsing-time JSON C++ Benchmarks

https://github.com/miloyip/nativejson-benchmark#parsing-time

JSON C++

19

https://github.com/miloyip/nativejson-benchmark#parsing-time JSON C++ Benchmarks

https://github.com/miloyip/nativejson-benchmark#parsing-time

JSON C++

20

https://github.com/miloyip/nativejson-benchmark#parsing-time JSON C++ Benchmarks

https://github.com/miloyip/nativejson-benchmark#parsing-time

212121

Demonstration

