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Tungsten and copper (alloy) based divertor target plasma-facing 
components – state-of-the-art and developments towards the 

application of tungsten-copper composites 
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Nuclear fusion reactors – a highly demanding environment

~ 1 MW/m2

[J. Linke et al., Matter Radiat. Extremes, 2019]

Nuclear fuel rod

CSP receiver

[https://de.m.wikipedia.org/wiki/Datei:Nuclear_fuel_element.jpg]

[https://de.wikipedia.org/wiki/Sonnenwärmekraftwerk#/m
edia/Datei:PS20andPS10.jpg]
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State of the art – Tungsten and copper based plasma-facing 
components (PFCs)

W as PFM
⇛ Low sputtering yield
⇛ Low tritium retention
⇛ High melting point
⇛ Low vapour pressure
...

Cu (alloys) as heat sink materials
⇛ Excellent thermal conductivity

[D. Stork et al., J. Nucl. Mater., 2014]

• PFCs comprise differing materials  composite structure
• Decisive for PFC performance and integrity:

 ~mm joining zone

EU DEMO

ITER

[J.H. You et al., Fus. Eng. Des., 2022]

[R.A. Pitts et al., Nucl. Mater. Energy, 2017]



In future D-T fusion reactors

• High neutron dose  Uncertainties in material and component performance

• Higher demands on lifetime  less component replacements desired

• Larger elements  fewer edges and relaxed tolerances
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Monoblock vs. flat-tile

Tungsten monoblock design

+ damage tolerance
- amount of W
- scalability?

[T. Hirai et al., Phys. Scr., 2014]

Tungsten flat-tile design

+ reasonable amount of W
+ bulky high conductivity heat sink
- high stresses at joint edges
- concern about cascade failure

W armour

heat sink
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Tungsten-copper (W-Cu) metal matrix composites (MMCs)

5

 Good-natured material system for metal matrix (MMC) composite fabrication
o (nearly) no interfacial reaction or mutual solubility
o fabrication through liquid melt infiltration possible
o constituent materials readily available at moderate cost

W-Cu composite:
„mixture“ of W and Cu

 Cu matrix ensures high 
heat conduction

 W as reinforcing phase
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W fibre-reinforced composites
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Ductile failure of a drawn K doped 
W fibre after annealing at 1900°C

 Use of high-strength drawn W fibres
⇛ Texture/fine-grain strengthening effect
⇛ High microstructural stability 
⇛ High strength at elevated temperature

Longitudinal SEM cross 
section of a drawn W fibre
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Cu matrix

W fibre-reinforced W W fibre-reinforced Cu

W fibreW matrix
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Drawn W wire as reinforcement

 Twisted W yarn out of filaments with Ø = 16 µm
 Tensile strength at room temperature ca. 4 GPa

 Increasing fibre strength with decreasing fibre
diameter

CuCrZr
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Textile techniques for W preform fabrication – Weaving

7 cm

 Flat weavings out of W yarn
(14 x 16 µm) with different densities and patterns 

o High density: Atlas 1/7 with 84 warp yarns/cm

~10 m woven strand
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Textile techniques for W preform fabrication – Braiding

 Refined braiding technology:
o fabrication of multilayered braids for medium scale W fibre-reinforced Cu heat sink pipes

with a length ~400 mm

Triaxial braid
with axial reinforcement out of 
twisted W yarn (14 x 16 µm)

[P. Potluri and S. Nawaz, Developments in 
braided fabrics, in Specialist Yarn and Fabric 
Structures, R.H. Gong, Ed. Elsevier, 2011]

 Application to water-cooled PFCs ⇛ W fibre-reinforced Cu heat sink pipe
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PFC mock-ups – HHF testing

 High heat flux (HHF) qualification testing of monoblock type 
mock-ups with tungsten fibre-reinforced copper heat sink pipe

⇛ Brazed joint (AuCu alloy, ultrasonic NDE) between
W monoblocks and W fibre-reinforced Cu heat sink pipe

⇛ Successful HHF testing
o up to 1000 load cycles at 20 MW/m2

⇛ DEMO relevant hot water cooling conditions
o T = 130°C, p = 40 bar, v = 16 m/s

200 mm

HHF test facility GLADIS @ IPP Garching

W fibre-reinforced Cu pipe

[A. v. Müller et al., Phys. Scr., 2020]
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PFC mock-ups – HHF testing

 Infrared and optical images of PFC mock-up during HHF testing for 1000 cycles at 20 MW/m2

(FEA: Tsurface,max = 2272°C, W armour thickness: 8 mm)

 Maximum temperature of the tungsten fibre-reinforced copper heat sink at 20 MW/m2 according to FEA: Tpipe,max = 430°C

[A. v. Müller et al., Phys. Scr., 2020]
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Neutron irradiation of W fibre-reinforced CuCrZr

 Neutron exposure was performed in Belgian material test reactor BR2
 target irradiation fluence defined as 1 dpa (in W)

[D. Terentyev et al., Recent progress in the assessment of irradiation effects for in-vessel fusion materials: tungsten and copper alloys, Nucl. Fusion, 2021]

 EU irradiation campaign for screening mechanical properties of advanced Cu-
based materials for PFC applications (water-cooled divertor)
 assessment of strength properties by tensile testing
 irradiation/test temperatures 150°C to 450°C 
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W fibre-reinforced Cu – Outlook

 Combination of W fibre-reinforced Cu and W fibre-
reinforced W in one composite structure

o Exploit extraordinary properties of W fibres also 
for armour-heat sink joint enhancement

o Work towards 3D fibrous W preforms

 Work towards the use of Cu alloy (CuCr, CuCrZr) as matrix material and upscaling of fabrication
technology

 Tensile specimens for upcoming neutron irradiation experiments (BR2) fabricated

Layered W 
weavings embedded

in CuCrZr matrix

[J. Riesch, A. v. Müller et al., Nucl. Mater. Energy, 2024]
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Additive Manufacturing of W

 Additive manufacturing (AM):
o three-dimensional objects are created by sequential layerwise deposition of material under computer control
o objects with more or less arbitrary shape can be produced

[K. Kempen et al., Solid Freeform Fabrication Symposium, 2011]

Laser - PBF-LB/M
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Additive Manufacturing of W

[C. Ledford et al., Int. J. Refract. Met. 
Hard Mater., 2023]

[D. Dorow-Gerspach, et al., Nuclear Materials and
Energy, 2021]

 Additive manufacturing (AM):
o three-dimensional objects are created by sequential layerwise deposition of material under computer control
o objects with more or less arbitrary shape can be produced

Electron beam - PBF-EB/MLaser - PBF-LB/M
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Tailored W-Cu composite structures

W structures (unit cell size 2.5 mm) fabricated by means
of PBF-LB/M: honeycomb structures and lattices

W-Cu tensile specimen based on W lattice
(unit cell size 2.5 mm, W volume fraction 0.3)

2 mm

W

Cu

Additively manufactured
and Cu melt infiltrated W 

structures

 Influencing macroscopic thermomechanical properties through tailored microstructure
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Tailored W-Cu composite structures

576.1 MPa

82.2 MPa

-85.7%

[B. Curzadd et al., Nucl. 
Fusion, 2019]
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Translation to CAD designs

 Influencing macroscopic thermomechanical properties through tailored microstructure
» Optimisation of W-Cu material distribution for PFC performance enhancement

Material distribution Stress field

W Cu
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Tailored W-Cu composite structures

Cross section of tailored
W lattice preform

fabricated by means of
PBF-LB/M

W lattice preforms
fabricated by means

of PBF-LB/M

CAD model of a lattice
structure based on an 

optimised W-Cu material 
distribution

Material distribution Stress field

W

Cu

QN = 10 MW/m2

T0 = 650 °C

[B. Curzadd et al., Nuclear Fusion, 2019]

22 mm
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PFC mock-up fabrication and testing

AM preform fabrication

Cleaning
Cu(CrZr) Infiltration Machining

HHF testing in GLADIS facility
@ IPP Garching
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PFC mock-up HHF testing – FGM-like honeycomb

1st pulse 20 MW/m² mock-up O 

500th pulse 20 MW/m² mock-up O 

1st pulse 20 MW/m² mock-up O

 500 cycles at 20 MW/m2 surface heat load
» Stable surface temperature (≈1650°C) during cycling
» No indication of performance hampering damage

500th pulse 20 MW/m² mock-up O 

Porosity in Cu
matrix

Graded honeycomb structure
with attached armour tiles

Poster No. 12, R. Lürbke et al.
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Multimaterial PBF-LB/M

 Multi-material AM enables high design freedom
o Combination of different materials (properties) in one process
o Objective: 3-D arbitrary material distribution

 Significant progress during recent years regarding multi-material 
PBF-LB/M processing

Steel/CuCrZr
multi-material 

PBF-LB/M part

[T. Bareth et al., Fraunhofer DDMC, 2023]
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Multimaterial PBF-LB/M – W/CuCrZr

500 µm

 Good W/CuCrZr interface quality
through 2-D multi-material AM build
of CuCrZr on W

» „undulating“ transition
CuCrZr

 Small-scale PFC mock-up multi-
material W/CuCrZr fabrication
activities ongoing

W

[R. Lürbke et al., Advances in Additive 
Manufacturing with Powder Metallurgy, 2023]

CuCrZr

W
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Additive manufacturing for W-Cu PFCs – Outlook

 Exploit AM towards structured interfaces for resilient W-Cu
divertor PFC joints

 Exploit cutting-edge AM processes/fabrication methods for PFC 
applications/design

 Electron beam-based AM of W

 Adapted laser beam-based methods, e.g. beam shaping

 W-CuCrZr hybrid/multi-material AM
o HHF testing of first specimen ongoing W

CuCrZr
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Summary

 Tungsten and copper (alloy) based divertor target plasma-facing components (PFCs)
 Implementation in existing and planned fusion experiments/devices

 Work on tungsten-copper composites for PFC performance and damage resilience enhancement

 Tungsten fibre-reinforced composites based on preforms out of drawn tungsten fibres, incuding
upscaling of industrial fabrication technology and neutron irradiation experiments

 Progress in additive manufacturing (AM) technologies relevant for divertor PFCs
o Exploitation of design freedom given by AM  tailored tungsten-copper composite structures
o Fabrication and high heat flux testing of small-scale PFC mock-ups based on AM

Innovative composite structures for highly
loaded plasma-facing components in
fusion devices (ICoStruc), FKZ 13F1021

Many thanks for your attention!
Questions?


